ОКП 43 8140

Установки автоматические трехфазные для поверки счётчиков электрической энергии НЕВА-Тест 6303

Руководство по эксплуатации

ТАСВ.411722.005 РЭ

Содержание

введение	4
1 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
2 ОПИСАНИЕ УСТАНОВКИ И ПРИНЦИПА ЕГО РАБОТЫ	6
2.1 Назначение	6
2.2 Условия эксплуатации	6
2.3 Комплектность	7
2.4 Технические характеристики	
2.5 Описание Установки	12
2.6 Устройство и работа	14
З ПОДГОТОВКА УСТАНОВКИ К РАБОТЕ	17
3.1 Эксплуатационные ограничения	17
3.2 Назначение органов управления и подключения	17
3.3 Включение/выключение Установки	24
4 ПОРЯДОК РАБОТЫ	26
4.1 Управление Установкой от ПК	27
4.2 Работа Установки в автономном режиме	28
4.2.1 Интерфейс оператора Установки	
4.2.2 Режим установки параметров	32
4.2.2.1 Параметры поверяемого счетчика «Set»	32
4.2.2.2 Параметры Установки «F1»	36
4.2.2.3 Параметры теста самохода и порога чувствительности «F2»	
4.2.2.4 Калибровка углов между током и напряжением «F3»	
4.2.3 Режим тестирования	
4.2.3.1 Режим определения погрешности	
4.2.3.2 Тест порога чувствительности «St-Test»	
4.2.5.5 ТЕСТ Самохода « <i>ии-теst»</i>	
4.5 FADOTA 9 CTANOBRI TIPI 9 TPADJENUTOT BJORA 9 TPADJENUTOT 5-0055	
4.5.2 Режим измерении	
4.5.5 Huchipouku hupumenipos	
4.3.3.3 Параметры теста самохода и теста порога чувствительности	
4.3.3.4 Настройка выходных параметров	
4.3.3.5 Настройка параметров Установки	
4.3.3.6 Заводские установки	51
4.3.4 Тест самохода и тест порога чувствительности	52
4.3.4.1 Тест самохода	52
4.3.4.2 Тест порога чувствительности	52
4.3.4.3 Поиск метки в процессе тестов на самоход и порога чувствительности	52
4.3.5 Регулировка выходного напряжения, тока и фазы	53
4.3.6 Управление от ПК	53
4.4 Эталонный счетчик	54
4.4.1 Интерфейс оператора эталонного счетчика	54
4.4.2 Режим Измерений	55
4.4.3 Меню Настроек	57
4.5 Блок поверки точности хода часов	59
4.5.1 Интерфейс оператора Блока поверки точности хода часов	60
4.5.2 Режимы установки параметров	61
4.5.2.1 Изменение частоты выходного сигнала	61
4.5.2.2 Режим установки размерности отображения погрешности	62
4.5.2.3 Установка методов поверки прибора	
4.5.3 Режимы работы	63
4.5.3.1 Проверка точности хода часов	63
4.5.3.2 проверка точности частоты кварцевого генератора	
4.5.4 FUOUIIIU & LULIIIUBE YLIIIUHUBKU	

5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	67
6 МАРКИРОВКА И ПЛОМБИРОВАНИЕ	68
ПРИЛОЖЕНИЕ А СХЕМЫ ПОДКЛЮЧЕНИЯ УСТАНОВКИ К ПК	69
ПРИЛОЖЕНИЕ Б ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ	72
ПРИЛОЖЕНИЕ В МЕТОДИКА ПОВЕРКИ ДВУХЭЛЕМЕНТНОГО ОДНОФАЗНОГО СЧЕТЧИКА НА ТРЕХФАЗНЫХ АВТОМАТИЧЕСКИХ УСТАНОВКАХ НЕВА-ТЕСТ 6303	73
ПРИЛОЖЕНИЕ Г ПОДКЛЮЧЕНИЕ РАЗВЯЗЫВАЮЩИХ ТРАНСФОРМАТОРОВ ТОКА К УСТАНОВКАМ	77

Введение

Настоящее руководство по эксплуатации (далее - РЭ) распространяется на Установки автоматические трехфазные для поверки счётчиков электрической энергии НЕВА-Тест 6303 (далее Установки) и содержит сведения, необходимые для эксплуатации и технического обслуживания. Выпускаются по ТУ ТАСВ.411722.005.

Установки оснащены:

- трехфазными развязывающими токовыми трансформаторами (т.е. для поверки счётчиков не имеющих гальванической развязки между цепями тока и напряжения, например с возможностью поверки шунтовых счетчиков),

- интерфейсами RS-232 или RS-485, позволяющими проводить проверку работоспособности интерфейсов поверяемых средств измерения (СИ), а так же проверку функции записи параметров в память поверяемых СИ,

блоком для поверки точности хода часов поверяемых СИ.

Установки выпускаются в различных конструктивных вариантах в зависимости от размера стенда и количества устройств навески для подключения поверяемых СИ.

В зависимости от метрологических характеристик используемого эталонного средства измерения Установки выпускается в двух вариантах исполнения.

Пример обозначения при заказе:

Установки автоматические трехфазные для поверки счётчиков электрической энергии

<u>НЕВА-Тест 6303 И</u> - <u>0.1</u> <u>16</u> <u>Е4</u> <u>Т</u>

НЕВА-Тест 6303	X -	X.XX	XX	XX	Т	
						 Т – означает наличие блока проверки точности хода часов
						Тип интерфейса: E4 – RS485; E2 – RS232.
						Количество подключающих устройств
						Класс точности: 0.05 или 0.1
						 И – означает наличие развязывающих токовых транс- форматоров
						Тип Установки

1 Требования безопасности

1.1 При проведении работ по монтажу и обслуживанию Установки должны быть соблюдены требования ГОСТ 12.2.007.0-75 и "Правила технической эксплуатации электроустановок потребителей и правила техники безопасности при эксплуатации электроустановок потребителей", утвержденные Главгосэнергонадзором.

К работам по монтажу, техническому обслуживанию и ремонту Установки допускаются лица, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III для электроустановок до 1000 В.

При работе с Установкой необходимо соблюдать требования безопасности, установленные «Межведомственными Правилами охраны труда (ТБ) при эксплуатации электроустановок», М, "Энергоатомиздат", 2001 г.

1.2 По безопасности Установки соответствуют ГОСТ Р 52319-2005, категория измерений II, степень загрязнения 1.

Степень защиты оболочек по ГОСТ 14254-96 ІР20.

1.3 Блоки, входящие в состав Установки, должны быть подключены к шине защитного заземления до подключения Установки к сети питания.

Все подключения к присоединительным колодкам Установки должны осуществляться только после снятия напряжения с контактов присоединительной колодки.

2 Описание Установки и принципа его работы

2.1 Назначение

2.1.1 Установки предназначены для регулировки, калибровки и поверки средств измерения (СИ) активной, реактивной, полной мощности и энергии, СИ промышленной частоты, действующих значений напряжения и тока, фазовых углов и коэффициента мощности:

- однофазных и трехфазных счетчиков активной и реактивной электрической энергии,

- однофазных и трехфазных ваттметров, варметров и измерительных преобразователей активной и реактивной мощности,

- энергетических фазометров, частотомеров и измерителей коэффициента мощности,

- вольтметров, амперметров и измерительных преобразователей напряжения и тока в промышленной области частот.

2.1.2 Область применения.

Комплектация поверочных и испытательных лаборатории, а также предприятий, изготавливающих и ремонтирующих средства измерений электроэнергетических величин.

Установка может быть использована автономно и в сочетании с персональным компьютером (ПК), расширяющим ее функциональные возможности.

2.2 Условия эксплуатации

Рабочие условия эксплуатации Установок:	
Гемпература окружающего воздуха, °С	23 ± 5
Относительная влажность воздуха, %	до 80 при 25 °С
Атмосферное давление, кПа (мм рт. ст.)	от 84 до 106,7 (630 –800)

Электропитание Установок осуществляется от однофазной (220 \pm 10%) или трехфазной (3×220/380B \pm 10%) сети переменного тока (50Гц \pm 5%) при коэффициенте несинусоидальности не более 5%.

Рабочее помещение должно быть оборудовано системой кондиционирования и очистки воздуха. Не допускается вход в помещение в верхней одежде и без сменной обуви.

2.3 Комплектность

Состав Установок автоматических однофазных для поверки счётчиков электрической энергии НЕВА-Тест 6303 соответствует приведенному в таблице 2.3.1

Таблица 2.3.1

	Наименование	Обозначение	Кол-во*
1	Установка автоматическая трехфазная НЕВА-Тест 6303		1 шт.
	Трансформатор тока развязывающий **	TACB 411722 005	6/16/32 шт.
	Трехфазный эталонный счетчик		1 шт.
	Блок поверки точности хода часов ***		ШТ.
2	Головка фотосчитывающая		6/16/32 шт.
3	Комплект ЗИП		1 комплект
4	Формуляр	ТАСВ.411722.005 ФО	1 экз.
5	Руководство по эксплуатации	ТАСВ.411722.005 РЭ	1 экз.
6	Программное обеспечение для ПК «Тест-СОФТ» на СD		1 шт.
7	Методика поверки ****	ТАСВ.411722.005 МП	1 экз.

* - для Установок с количеством мест 6/16/32 соответственно

** - только для исполнения НЕВА-Тест 6303 И с развязывающими трансформаторами тока

*** - только для исполнения HEBA-Tect 6303 Т с блоком для поверки точности хода часов

**** - методика поверки высылается по запросу

Примечание. Комплект ЗИП обычно включает в себя:

Наименование	Кол-во*
Кабель для подключения к импульсному выходу счетчика	6/16/32 шт.
Кабель RS-232 или RS-485 для подключения к интерфейсу счетчика	6/16/32 шт.
Кабель RS-232 для подключения к ПК	2 шт.
Сменные штыри 4,5 мм для устройств навески счетчиков	42/112/224
Кабель для подключения цепей напряжения	6/16/32 шт.
Переходник USB-COM	1 шт.

* - для Установок с количеством мест 6/16/32 соответственно

2.4 Технические характеристики

2.4.1 Установки обеспечивают формирование трехфазной системы токов и напряжений с параметрами и в диапазонах, указанными в таблице 2.4.1.

	Значение тех			
Наименование		Ппименацие		
технической характеристики	Диапазон	Дискретность задания	Допускаемое отклонение	примечание
Действующее (среднеквадратическое) значе- ние переменного тока, А	от 0,01 до 120	0,001	0,5 %	в диапазоне токов 0,25 А 120 А
Действующее (среднеквадратическое) значение переменного напряжения U_{Φ} (U _Л), В	от 0 до 300/520	0,01	0,5 %	в диапазоне напряжений 40/70 В 300/520 В
Фазовый угол между током и напряжением 1- ой гармоники одной фазы, градус	от 0 до 360	0,1	2	
Возможность введения гармоник основной частоты в цепи тока и цепи напряжения	от 2 до 21			не более 40%
Номинальные значения устанавливаемого коэффициента мощности	0,5L; 0,8L; 1,0; 0,8 C; 0,5C			
Частота основной переменного тока, Гц	от 45 до 65	0,01		
Нестабильность установленного значения активной мощности за 180 с, не более %			±0,05	при Кр=1
Коэффициент нелинейных искажений при генерации синусоидальных сигналов тока и напряжения при максимально допустимой активной нагрузке не более, %			±1,0	
Выходная мощность Установки на каждый поверяемый счетчик по каждой фазе не менее, В·А: - в цепи тока (при токе100А): - с развязывающими TT, - без развязывающих TT, - в цепи напряжения	60 35 15			Суммарная выход- ная мощность Уста- новок по каждой фазе (с кол-вом мест 6/16/32) (650/ 1500 / -) (350/ 650 /1500) (100/ 240 /400)

Таблица 2.4.1

2.4.2 Метрологические характеристики (МХ) Установок определяются МХ эталонных СИ, входящих в комплект Установки, и приведены в таблице 2.4.2.

Вид погрешности измеряемых	Пиопозонии	Пределы д	опускаемой ности Установок	
параметров электрической энер-	измерений	НЕВА-Тест 6303	НЕВА-Тест	Примечание
ГИИ		0.05	6303 0.1	
Основная относительная по-	$50 \text{ MA} < I_{\Phi} \leq 120 \text{ A}$	±	0,1	
грешность измерения средне-	$10 \text{ мA} \leq I_{\Phi} \leq 50 \text{ мA}$	±	0,2	
квадратических значений тока I_{Φ}				
	$40/70 < U_{\rm T} / U_{\rm T} < 480/830 \rm B$	+	0.1	
грешность измерения средне-	$10/17 < U_{\Phi} / U_{\Pi} < 40/70 B$	± (0,1	
квалратических значений напря-				
жения U _Ф (U _Л), %				
Абсолютная погрешность изме-	от 45 до 65 Гц	0,05		
рения частоты сети не более, Гц		·		
Абсолютная погрешность	от 0,5L до 0,5С	0,005		
измерения коэффициента				
активной мощности не более				
Основная относительная погреш-	$\cos \phi 1 \pm 0,1$			в диапазоне
ность измерения активной энер-	$0.01 \le I_{\Phi} \le 0.025 \text{ A}$	$\pm 0,10 (\pm 0,50^*)$	$\pm 0,20 (\pm 0,50*)$	напряжений
гии и активной мощности не оо-	$0.025 < I_{\Phi} \leq 0.05 \text{ A}$	$\pm 0.10 (\pm 0.20^*)$	$\pm 0,20 (\pm 0,30^*)$	OT 40/70
nee 76	$0.05 < 1_{\Phi} \le 0.10 \text{ A}$ $0.10 < I_{\Phi} < 100 \text{ A}$	± 0.05 ± 0.05	$\pm 0.10 (\pm 0.20^{\circ}) + 0.10$	до 300/320 В
	$100 < I_{\Phi} < 120 A$	± 0.00 ± 0.20	± 0.30	
		,	,	
	$\cos \varphi 0,5L - 1 - 0,5C$			
	$0.01 \le I_{\Phi} \le 0.025 A$	$\pm 0.10 (\pm 0.50^{*})$	$\pm 0.15 (\pm 0.50*)$	
	$ 0,025 < I_{\Phi} \le 0.05$ A	$\pm 0.10 (\pm 0.20^*)$	$\pm 0.15 (\pm 0.30^*)$	
	$0.03 < I_{\oplus} \leq 0.10 \text{ A}$ $0.10 < I_{\oplus} < 100 \text{ A}$	$\pm 0,10$ ± 0.08	$\pm 0.13 (\pm 0.20^{\circ})$ + 0.15	
	$100 < I_{\Phi} < 120 A$	± 0.00 ± 0.30	± 0.40	
		,	,	
	$\cos \varphi 0,25L - 0,5L$			
	$0.10 \leq I_{\Phi} \leq 100 \text{ A}$	± 0,15	$\pm 0,20$	
Основная относительная погреш-	$\sin \phi I \pm 0.1$		+ 0.40 (+ 0.50*)	в диапазоне
ность измерения реактивнои энергии и реактивной мошности	$0.01 \le 1_{\oplus} \le 0.025 \text{ A}$	$\pm 0.20 (\pm 0.30^{\circ})$ + 0.20 (± 0.30^{\circ})	$\pm 0.40 (\pm 0.30^{\circ}) + 0.40$	напряжении от 40/70
не более %	$0.05 < I_{\Phi} < 0.10 A$	$\pm 0.20 (\pm 0.30)$ ± 0.10	± 0.20	до 300/520 В
	$0,10 < I_{\Phi} \le 100 A$	± 0,10	± 0,20	,,
	$100 < I_{\Phi} \le 120 \text{ A}$	$\pm 0,40$	$\pm 0,60$	
	· 0.51 1 0.55			
	$\sin \varphi 0.5L = 1 = 0.5C$	+0.20(+0.50*)	+0.30(+0.50*)	
	$0.01 \le 1_{\oplus} \le 0.025 \text{ A}$ $0.025 < I_{\oplus} < 0.05 \text{ A}$	$\pm 0.20 (\pm 0.30^{\circ})$ + 0.20 (+ 0.30*)	$\pm 0,30 (\pm 0,50)$ ± 0.30	
	$0.05 < I_{\Phi} \le 0.10 \text{ A}$	± 0,20	$\pm 0,30$	
	$0,10 < I_{\Phi} \le 100 A$	± 0,15	$\pm 0,30$	
	$100 < I_{\Phi} \le 120 \text{ A}$	$\pm 0,60$	$\pm 0,80$	
	$0.10 < I_{\Phi} < 100 A$	± 0.30	± 0.40	
Класс точности		0,01	_ 0,10	
трансформаторов тока**				
Погрешность измерения периода		0,5		
следования импульсов, ppm ***				

Таблица 2.4.2

 для исполнения с трехфазными развязывающими токовыми трансформаторами НЕВА-Тест 6303 И (отсутствие знака * означает, что данное значение действительно как для исполнения с развязывающими токовыми трансформаторами, так и без них)

** - только для исполнения НЕВА-Тест 6303 И с развязывающими трансформаторами тока

*** - только для варианта исполнения НЕВА-Тест 6303 Т с блоком для поверки точности хода часов

2.4.3 Эталонный счетчик Установки имеет три канала измерения тока на поддиапазонах 0.025А; 0.05А; 0.1А; 0.25А;0.5А; 1.0А; 2.5А;5.0А; 10.0А; 25.0; 50.0; 100.0А и три канала измерения напряжения на поддиапазонах 60/100 В, 120/208 В, 240/415 В и 480/830 В.

Параметры сигнала на частотном выходе «Fh»:

амплитуда импульсов – $U_0 < 0,4$ B; $U_1 > 4,0$ B при RH ≥ 10 кОм;

длительность импульса не менее 20 мкс;

Частота на импульсном выходе «Fh» эталонного счётчика пропорциональна измеряемой мощности. Постоянные эталонного счётчика по активной мощности C_H (имп / кВт час) и по реактивной мощности (имп / кВар час) для разных пределов по напряжению и току представлены в таблице 2.4.3. Постоянные эталонного счётчика на импульсном выходе Fl: $C_L = C_H / 10000$

	100 A	50A	25A	10A	5A	2.5A
480V	4x10 ⁵	8x10 ⁵	1,6x10 ⁶	$4x10^{6}$	8x10 ⁶	1,6x10 ⁷
240V	8x10 ⁵	1,6x10 ⁶	3,2x10 ⁶	8x10 ⁶	1,6x10 ⁷	3,2x10 ⁷
120V	1,6x10 ⁶	3,2x10 ⁶	6,4x10 ⁶	1,6x10 ⁷	3,2x10 ⁷	6,4x10 ⁷
60V	3,2x10 ⁶	6,4x10 ⁶	1,28x10 ⁶	3,2x10 ⁷	6,4x10 ⁷	1,28x10 ⁸
	1A	0.5A	0.25A	0.1A	0.05A	0.025A
U 480V	1A 4x10 ⁷	0.5A 8x10 ⁷	0.25A 1,6x10 ⁸	0.1A 4x10 ⁸	0.05A 8x10 ⁸	0.025A 1,6x10 ⁹
U 480V 240V	1A 4x10 ⁷ 8x10 ⁷	0.5A 8x10 ⁷ 1,6x10 ⁸	0.25A 1,6x10 ⁸ 3,2x10 ⁸	0.1A 4x10 ⁸ 8x10 ⁸	0.05A 8x10 ⁸ 1,6x10 ⁹	0.025A 1,6x10 ⁹ 3,2x10 ⁹
I 480V 240V 120V	1A 4x10 ⁷ 8x10 ⁷ 1,6x10 ⁸	0.5A 8x10 ⁷ 1,6x10 ⁸ 3,2x10 ⁸	0.25A 1,6x10 ⁸ 3,2x10 ⁸ 6,4x10 ⁸	0.1A 4x10 ⁸ 8x10 ⁸ 1,6x10 ⁹	0.05A 8x10 ⁸ 1,6x10 ⁹ 3,2x10 ⁹	0.025A 1,6x10 ⁹ 3,2x10 ⁹ 6,4x10 ⁹

Таблица 2.4.3

2.4.4 Установки обеспечивают контроль метрологических характеристик и поверку:

 электронных счетчиков электроэнергии, имеющих импульсный оптический выход (с использованием фотосчитывающего устройства);

электронных счетчиков электроэнергии, имеющих импульсный токовый выход;

- индукционных счетчиков (с использованием фотосчитывающего устройства).

Пределы установки постоянной поверяемого счетчика в автономном режиме работы Установки от 1 до 99 999 имп./кВт*ч (для задания постоянной счетчика большей разрядности используется ПО «Тест-СОФТ»).

Установки обеспечивают обработку сигнала на импульсных входах локальных вычислителей погрешности со следующими параметрами:

- амплитуда импульсов:
 - 5В ТТЛ уровень,
 - максимальном значение не менее 2В при смещении не более 1В для выходов "открытый коллектор" и "сухой контакт";
- длительность импульса не менее 0,5 мс;
- максимальная частота входного сигнала не более 2 кГц (количество импульсов в секунду соответствует значению мощности, измеренной проверяемым счетчиком, с учетом постоянной счетчика).

Установки обеспечивают поверку электронных счетчиков электроэнергии, имеющих оптический испытательный выход со следующими параметрами:

- длина волны излучаемых сигналов от 550 до 1000 нм;
- освещенность на расстоянии 10 мм от источника сигнала от 50 до 1000 мкВт/см³;
- минимальная длительность импульса 200 мкс;
- минимальный период следования импульсов 400 мкс.

2.4.5 Установки обеспечивают технические характеристики в соответствии с табл.2.4.1, 2.4.2 по истечении времени установления рабочего режима не более 20 мин.

2.4.6 Полная потребляемая мощность от сети питания, в зависимости от конструктивного варианта исполнения приведены в табл.2.4.4.

2.4.7 Габаритные размеры и масса Установок, в зависимости от конструктивного варианта исполнения приведены в табл.2.4.4

Таблица 2.4.4

Вариант исполнения	Кол-во устройств навески	Кол-во этажей стенда	Кол-во стендов	Габаритные размеры (длина, ширина, высота), не более, мм	Масса (нетто/брутто), не более, кг	Потребляемая мощ- ность, не более, ВА (для Установок с развязывающими ТТ)
НЕВА-Тест 6303 6	6	1	1	2000×850×1650	220/300	1500 (2500)
НЕВА-Тест 6303 16	16	2	1	2250×850×2000	320/420	2500 (5000)
НЕВА-Тест 6303 32	32	2	2	2x(2250×850×2000)	320/420+200/320	5000(-)

2.4.8 Время непрерывной работы Установки не менее 8 часов с перерывом 1 час.

Внимание! При максимальном токовом диапазоне (85 - 120А) рекомендуемое время непрерывной работы Установки не более 5 минут работы с перерывом 10 минут. При этом следует обратить особое внимание на качество соединений в токовых цепях для исключения сильного нагрева.

2.4.9 Среднее время наработки на отказ Установки - не менее 25000 ч. Средний срок службы Установки - не менее 8 лет.

2.5 Описание Установки

2.5.1 Установка выполнена в виде функционально законченного рабочего места поверителя и может работать в двух режимах:

- в автономном режиме при управлении с клавиатуры и контролем по индикаторам, расположенным на лицевых панелях Установки и эталонного счетчика;

- при управлении от ПК по последовательному интерфейсу с помощью программного обеспечения (ПО) «Тест-СОФТ».

Отображение параметров сигналов осуществляется на встроенном дисплее блока управления и на встроенном дисплее эталонного счетчика, либо на ПК с помощью ПО «Тест-СОФТ».

Внешний вид Установки представлен на рис. 2.5.1-2.5.3.

Рисунок 2.5.1 Внешний вид Установки

2.5.2 Конструктивно Установка выполнена в виде приборной стойки, на которой расположен стенд с устройствами навески для установки и подключения поверяемых СИ. В состав Установки входят:

- эталонное средство измерения (эталонный счетчик),

- вычислители погрешности,

- блок управления,

- трехфазный источник фиктивной мощности.

В состав источника фиктивной мощности входят:

- блок генератора (трехфазный источник испытательных сигналов),

- усилители тока и напряжения.

Источник фиктивной мощности и эталонное средство измерения монтируются в приборной стойке, на которой расположен стенд для установки и подключения поверяемых счетчиков.

Над каждым устройством навески расположен локальный вычислитель погрешности с разъёмами для подключения испытательных выходов СИ и разъёмами для подключения интерфейса RS-232 или RS-485 (в зависимости от варианта исполнения Установки). Каждый локальный вычислитель погрешности имеет свой номер.

На лицевой панели приборной стойки расположены выключатель питания и кнопки включения, отключения источника фиктивной мощности.

2.5.3 На Установку могут быть установлены фотосчитывающие (сканирующие) головки, с корректировкой по 3 диапазонам. Они позволяют принимать сигнал и от индукционных электросчетчиков и от электронных счетчиков с цифровым импульсным LED выходом.

Электросчетчики с разными постоянными могут поверяться одновременно (не более двух типов, по одной на каждый этаж навесок).

2.5.4 В усилителях мощности Установки реализована система защиты. При КЗ или перегрузке по напряжению или при разрыве токовой цепи, выходные цепи отключаются и на дисплее блока управления индицируется сообщение "ERR".

2.5.5 Установка позволяет проводить следующие испытаний счётчиков:

- определение относительной погрешности;
- определение стандартного отклонения (S) при определении погрешности;
- проверка отсутствия самохода;
- проверка порога чувствительности;
- проверка постоянной счётчика;
- проверка счётного механизма;

ти;

- определение дополнительных погрешностей при изменении напряжения и частоты се-

- определение дополнительных погрешностей при наличии гармоник в цепях тока и напряжения;

определение дополнительных погрешностей при несимметрии нагрузки.

2.6 Устройство и работа

Структурная схема Установки представлена на рисунке 2.6.1.

Рисунок 2.6.1 Структурная схема Установки.

Генератор цифрового сигнала

Управление работой Установки обеспечивает Плата Центрального процессора (ЦП). По командам от встроенной клавиатуры или ПК центральный процессор управляет генератором цифрового сигнала и переключает выходные диапазоны.

В генераторе сигнала используются различные методы цифровой частотной, амплитудной и фазовой модуляции, для формирования синусоидального сигнала.

Процессор оцифровывает основную гармонику синусоидальных сигналов и гармонические составляющие (если в выходном сигнале должны присутствовать гармоники) и сохраняет информацию в ОЗУ. По сигналам генератора оцифрованные значения сигналов извлекаются из ОЗУ и подаются на входы цифро-аналоговых преобразователей (ЦАП). На выходах ЦАП формируются синтезированные синусоидальные сигналы, которые имеют заданный фазовый сдвиг. С выходов ЦАП эти сигналы подаются на усилители мощности, амплитуда сигналов на входах усилителей мощности регулируется 16-ти битными ЦАПами. Это обеспечивает точность регулировки 0.01 % полного масштаба (*полной шкалы*).

Т.о. генератор испытательных сигналов формирует сигналы для усилителей тока и напряжения, которые усиливают сигналы, поступающие с генератора.

Усилители мощности

В Установке используются ШИМ-усилители напряжения и тока с высокой производительность (более 85%) и низким тепловыделением, построенные на составных операционных усилителях. В ШИМ-усилителях обеспечивается защита от короткого замыкания по цепям напряжения, защита от разрыва в токовых цепях и быстрое срабатывание защиты при перегрузке по току, при этом обеспечивается устойчивая работа усилителей. Так же в усилителях мощности реализована система самодиагностики, начальная инициализация и выдача сигнала при наличии ошибки.

Сигналы с выходов усилителей тока и напряжения подаются на входные цепи поверяемых счётчиков и измерительные цепи образцового счётчика

Нагрузкой усилителей каналов напряжения служат подключенные параллельно цепи напряжения образцового счетчика и всех поверяемых счетчиков. Сигналы с выходов усилителей тока поступают непосредственно на поверяемые счетчики и образцовый счетчик, соединенные между собой последовательно. (В Установках, укомплектованные трехфазными развязывающими трансформаторами тока, сигналы с выходов усилителей тока поступают на трехфазные развязывающие трансформаторы тока, соединенные между собой последовательно. К выходным обмоткам трансформаторов тока подключаются токовые цепи счетчиков. Трансформаторы тока работают в режиме короткого замыкания, это обеспечивает отсутствие взаимного влияния фазных сигналов напряжения и тока при поверке электросчетчиков. Установки, укомплектованные трехфазными развязывающими трансформаторами тока, позволяют осуществлять поверку счетчиков, не имеющих перемычек между цепями тока и напряжения и счетчиков с шунтовыми датчиками тока.)

Эталонный счетчик

В Установке для поверки счетчиков используется эталонный счетчик (метод сравнения). Который измеряет напряжение и ток в широком диапазоне.

Величины заданных напряжений измеряются эталонным счетчиком с помощью резистивных делителей, подключенных параллельно вторичным обмоткам трансформатора напряжения. Величина протекающего в последовательной цепи тока измеряется датчиками тока, представляющими собой измерительные токовые трансформаторы. Сигналы с датчиков поступают на вход цифро-аналогового преобразователя, где преобразуются в цифровой код, который считывается контроллером.

По измеренным значениям токов, напряжений и сдвига фаз вычисляется фиктивная мощность, действующая в измерительном канале.

В режиме поверки Установки ток и напряжение от внешнего источника фиктивной мощности подаются на эталонный счетчик через присоединительную колодку. Значение измеренной мощности передается на испытательный выход Установки в виде последовательности импульсов, частота которых определяется постоянной счетчика.

Вычислители погрешности

Погрешность проверяемого счетчика определяется по разности значений фиктивной мощности, полученной в результате расчета эталонным счетчиком, и измеренной поверяемым счетчиком.

В Установке для каждого электросчетчика используются вычислители погрешности на базе микропроцессоров, которые соединены внутренним интерфейсом RS-485.

Установка определяет отклонение частоты на испытательном выходе поверяемого счётчика от частоты, формируемой образцовым счётчиком, и выводит результаты измерений по последовательным интерфейсам: RS-232 в ПК и RS-485 на вычислители погрешности.

3 Подготовка Установки к работе

3.1 Эксплуатационные ограничения

Если Установка внесена в помещение после пребывания при температуре окружающей среды ниже минус 20° С, она должна быть выдержана в нормальных условиях в выключенном состоянии не менее 4 ч

Внимание! При попадании воды или иных жидкостей внутрь корпуса использование Установки не допускается.

3.2 Назначение органов управления и подключения

На рисунках 3.2.1 – 3.2.3 представлены виды лицевой панели Установки.

На рисунке 3.2.4 представлен поверяемый счетчик, установленный на устройство навески, с наведенной на него фотоголовкой и вид лицевой панели вычислителя погрешности.

- 1 кнопка «*Reset*», перезапуск блока управления Установки,
- 2 светодиоды «U warming alarm» неисправности усилителей напряжения или КЗ,
- 3 светодиоды «I warming alarm» неисправности усилителей тока перегрузки,
- 4 тумблер переключения управления от встроенной клавиатуры или от ПК «*PC-key*»,
- 5 дисплей, подробное описание информации отображаемой на дисплее в различных режимах приведено в п.4.2;
- 6 клавиатура, подробное описание назначения клавиш приведено в п.4.2.1;
- 7 тумблер подачи питания «ON/OFF» на Установку;
- 8 кнопка подачи питания на выходы тока и напряжения «Start»,
- 9 кнопка снятия питания с выходов тока и напряжения «Stop».

Рисунок 3.2.1 Лицевая панель Установки с блоком управления

- 1 токовые клеммы с пофазными перемычками подачи тока с усилителей на стенд с устройствами навески;
- 2 зеленый светодиод сигнализирует о рабочем состоянии устройства навески;
- 3 красный светодиод сигнализирует о перегрузке или незамкнутой токовой цепи устройства навески.
 - Рисунок 3.2.2 Лицевая панель Установки с токовыми клеммами.

- 1 кнопка аварийного отключения Установки от цепи питания *«EMERGENCY STOP»*; 2 кнопка поднятия/опускания фотосчитывающих головок для установки/снятия поверяемых счетчиков «skan move»;
- 3 переключатель реле.

Рисунок 3.2.3 Лицевая панель Установки с выключателем аварийного отключения питания

- 1 светодиодный индикатор импульсного входа для фотосчитывающей головки (поз.6),
- 2 светодиодный индикатор импульсного входа для электронных счетчиков и вход для поверки точности хода часов (поз.8),
- 3 светодиодный индикатор (резерв),
- 4 дисплей отображения погрешности или номера устройства навески,
- 5 кнопка перезапуска вычислителя погрешности «*Restart*»,
- 6 разъем подключения фотосчитывающей головки (режим r/kWh см. п.4.2.2.1),
- 7 разъем подключения последовательного интерфейса поверяемого счетчика,
- 8 разъем подключения импульсного выхода (режим p/kWh см. п.4.2.2.1) и выхода временных импульсов счетчика (п.4.5.4).

Рисунок 3.2.4 Лицевая панель вычислителя погрешности

Фотоголовка

Головка фотосчитывающая позволяет принимать сигнал и от индукционных электросчетчиков, и от электронных счетчиков с цифровым импульсным LED выходом.

С задней стороны фотоголовки расположени 5 светодиодов слева направо: 2 зеленых, 2 желтых, 1 красный которые используются как индикаторы уровня сигнала и выполняют следующие функции: красные светодиоды – импульсный индикатор, загорание красного светодиода свидетельствует о наличии импульса на выходе. желто-зеленые светодиоды – индикаторные лампочки уровня силы сигнала, имеется ввиду сила принимаемого сигнала. Чем больше светятся зеленые и желтые светодиоды, тем выше уровень силы принимаемого сигнала, светодиоды уровня силы сигнала светятся последовательно слева направо.

На верхней стороне фотосчитывающей головки расположены: регулятор чувствительности и кнопка переключения режимов работы фотоголовки. При повороте регулятора по часовой стрелке чувствительность датчика увеличивается. На лицевой стороне фотоголовки находятся два светодиода, расположенные рядом с оптическими датчиками (фотодиодами). При нажатии на кнопку переключения режимов работы светодиоды переходят в режим излучения. По направлению излучения светодиодов можно отрегулировать расположение фотосчитывающей головки относительно поверяемого счетчика.

В режиме работы с индукционными счетчиками происходит считывания метки с диска индукционных счетчиков. В этом режиме происходит засветка диска красным светом, отраженный от поверхности диска свет фиксируется датчиком фотоголовки. При прохождении черной метки на диске свет не отражается и датчик срабатывает. Установите регулятор чувствительности фотоголовки в крайнее положение против часовой стрелки - минимальная чувствительность, при этом 2 желтых и 2 зеленых светодиода на задней стороне фотоголовки должны гореть (красный не горит). При прохождении метки желтые и зеленые светодиоды гаснут, а красный загорается (на время прохождения метки). При недостаточной чувствительности фотоголовки (неправильной настройке) желтые и зеленые светодиода не горят, красный может гореть. Для настройки, поверните регулятор чувствительности чуть-чуть по часовой стрелке, так же допускается регулировка перемещением фотоголовки относительно диска индукционного счетчика по горизонтали и вертикали. Помните про замедленную реакцию фотоголовки на регулировку!

В режиме работы с электронными счетчиками датчик фотоголовки реагирует на свечение LED светодиода электронных счетчиков (в этом режиме засветка не осуществляется). Для регулировки положения фотоголовки при наведении на светодиод счетчика допускается включать режим засветки для точного наведения фотоголовки на светодиод счетчика. Регулятором чувствительности добейтесь того, чтобы светодиоды фотоголовки мигали в такт телеметрическому светодиоду поверяемого счетчика.

На рисунке 3.2.5 представлен вид лицевой панели эталонного счетчика.

- 1 дисплей, подробное описание информации отображаемой на дисплее в различных режимах приведено в п.4.2;
- 2 кнопка установки токового предела/перемещение маркера влево,
- 3 кнопка установки предела напряжения/перемещение маркера вправо,
- 4 кнопка установки типа мощности,
- 5 кнопка ввода «*Enter*»,
- 6 кнопка выхода *«Escape»*.

Рисунок 3.2.5 Лицевая панель эталонного счетчика

На рисунке 3.2.6 представлен вид боковой панели Установки с расположенными на ней разъемами последовательных интерфейсов для подключения к ПК и сетевым кабелем.

Один из последовательных интерфейсов (RS-232) предназначен для управления от ПК блоком управления Установки. Второй последовательных интерфейсов (RS-485) предназначен для подключения к ПК счетчиков с последовательным интерфейсом RS-485. Схема подключения Установки к ПК с одновременным подключением счетчиков по последовательному интерфейсу RS-485 представлена в приложении A, рисунок A4. 485-й интерфейс на Установках НЕВА-Тест 6303 предназначен для прямого соединения с поверяемыми счетчиками. В Установке уже расположен преобразователь RS485-RS232. Таким образом, разъем обозначенный на Установке как "485" физически является 232-ым интерфейсом, но предназначен для подключения к поверяемыми счетчиками по интерфейсу RS485. Распайка разъема "485" аналогична распайке разъема "232", подключаться к нему можно напрямую через COM-port таким же нуль-модемным кабелем.

- 1 сетевой шнур питания Установки;
 2 разъем последовательного интерфейса RS-232 для подключения к ПК;.
 3 разъем интерфейса RS-485

Рисунок 3.2.6 Боковая панель Установки.

3.3 Включение/выключение Установки

Внимание! В целях безопасности подключение (отключение) поверяемого прибора рекомендуется производить при выключенном питании. В противном случае подключение (отключение) к измеряемым цепям должно производиться в соответствии с действующими правилами электробезопасности.

Внимание! Оборудование и ПК должны быть надежно заземлены. Необходимо следить за тем, чтобы соединения были правильно и надежно закреплены во избежание перегрева мест контакта и возрастания переходного сопротивления.

Включение Установки производят в следующей последовательности:

- подключите поверяемое оборудование к клеммам устройств навески, расположенным на стенде;

- установите фотосчитывающие головки над устройствами навески и подсоедините их к 5 контактным разъемам вычислителей погрешности. Варианты подключения:

- механический электросчетчик (фото считыватель) - подключите фотосчитывающие головки, расположенные напротив поверяемых электросчетчиков ко входам " " Дзетствующих вычислителей погрешности HS 6000

- импульсный сигнал - если у счетчика есть импульсный выход, отключите фотосчитывающие головки от входов " 1 " НЅ 6000. Используйте специальный кабель для подключения импульсного выхода поверяемого счетчика ко входу " 1 " НЅ 6000, соедините красный зажим (крокодил) с +5V и черный с 0V.

- если у счетчика есть соединитель RS485, и при тестировании требуется передача по интерфейсу RS-485, соедините разъем RS485 счетчика с разъемом RS485 HS 6000 специальным кабелем, соедините красный зажим (крокодил) с "А" и черный с "В".

- включите питание Установки переключателем «ON/OFF» на лицевой панели Установки (рисунок 3.2.1);

- кнопкой «Start» расположенной на лицевой панели Установки (рисунок 3.2.1) подать питание на выходы тока и напряжения.

Внимание! До появления основного экрана режима измерений заставки на дисплее блока управления не нажимать кнопку *«Start»* для подачи на выходы тока и напряжения.

При включении питания Установки производится самотестирование оборудования и начальная инициализация во время которого на дисплее блока управления индицируется версия встроенного ПО (рисунок 3.3.1).

Рисунок 3.3.1 Экран блока управления во время инициализации

После завершения инициализации, через 10-15 с., на дисплее блока управления индицируется основной экран режима измерений (рисунок 3.3.2).

*	U	I	W		
А	0.000	0.000	0.000		
В	0.000	0.000	0.000		
С	0.000	0.000	0.000		
3P3\	W W STD	Un=220.0V	lb=10.00A		
Forw	vard I	F=50.00Hz	Imax=100.00A		
Φ OI	rder ABC	T=01	l=100%lb		
Sine wave		C1=01800.00	C2=01800.00		
Setup to set parameter Start to test					

Рисунок 3.3.2 Основной экран блока управления

Для установления рабочего режима необходимо выдержать Установку в течение 20 мин во включенном состоянии.

Выключение Установки производят в следующей последовательности:

- кнопкой «Stop» расположенной на лицевой панели Установки (рисунок 3.2.1) снять питание с выходов тока и напряжения,

- выключите питание Установки переключателем «ON/OFF» на лицевой панели Установки (рисунок 3.2.1).

Внимание! Если во время работы возникла непредвиденная ситуация сразу нажимайте кнопку аварийного отключения Установки от цепи питания *«EMERGENCY STOP»*.

Примечание. Установка не предназначена для работы при разомкнутых цепях тока, даже если в данный момент протекание тока по этим цепям нет, поэтому при поверке однофазных счетчиков необходимо закорачивать между собой неиспользуемые клеммы.

> Поверка однофазных счетчиков в автоматическом режиме осуществляется по фазе А, следовательно на каждом подключающем месте необходимо установить перемычки на штыри фаз В и С..

4 Порядок работы

Установка может работать в двух режимах:

при управлении от ПК по последовательному интерфейсу RS-232 с помощью программного обеспечения «Тест-СОФТ»;

в автономном режиме при управлении от клавиатуры, расположенной на лицевой панели блока управления, при ручном управлении Установкой, следуйте сообщениям на дисплее блока управления.

Переключение режима работы Установки осуществляется переключением тумблера «PC-key» (рис. 3.2.1), расположенного на передней панели блока управления.

Не зависимо от того в каком режиме работы находится Установка в автономном, или от ПК на дисплее эталонного счетчика отображаются значения всех параметров измеренных эталонным счетчи-ком (см. п.4.3).

4.1 Управление Установкой от ПК

При управлении Установкой от ПК необходимо установить на ПК программу «Tect-CO Φ T». Программа «Tect-CO Φ T» работает под операционными системами MS Windows 98, Windows 2000, Windows XP, Windows 7 32, Windows 7 64.

Для работы программы рекомендуется использовать компьютер следующей конфигурации: процессор Intel Core i3 или более мощный,

не менее 1 ГБ ОЗУ и не менее 100 МБ дискового пространства для установки программы,

видеоадаптер с поддержкой разрешения 1024х768 с глубиной цвета 32 бита,

один свободный СОМ-порт RS-232 или переходник USB-СОМ.

Для более комфортной работы с большими объемами данных может потребоваться более мощный компьютер. Для работы программы «Тест-СОФТ» необходимо подключить Установку к разъему RS-232 последовательного СОМ-порта ПК (см. приложение А).

Примечание. В случае отсутствия в ПК СОМ-порта необходимо установить плату расширения СОМ-портов в материнскую плату, либо подключить внешний преобразователь интерфейсов (например, USB-RS232).

Установку необходимо перевести в режим управления от ПК, переключив тумблер «PC-key» (рис. 3.2.1) в верхнее положение. При переходе Установки в режим управления от ПК на дисплее блока управления высвечивается сообщение "on line" (рис. 4.1.1) при этом управление от встроенной клавиатуры блока управления полностью блокируется и управление Установкой осуществляется из программы «Тест-СОФТ», установленной на ПК.

Рисунок 4.1.1 Экран блока управления в режиме управления от ПК

Порядок работы с программой «Тест-СОФТ» подробно описан в "ПРОГРАММА «Тест-СОФТ». Руководство пользователя".

4.2 Работа Установки в автономном режиме

Для работы Установки в автономном режиме необходимо переключить тумблер «PC-key» (рис. 3.2.1) в нижнее положение, при этом на дисплее блока управления индицируется основной экран режима измерений (рисунок 3.3.2). При работе с Установки в автономном режиме управление осуществляется от встроенной клавиатуры блока управления (рис. 4.2.1).

4.2.1 Интерфейс оператора Установки

Интерфейс оператора Установки состоит из 32-х кнопочной клавиатуры (рисунок 4.2.1) и графического дисплея размером 240(ширина)*128(высота) пикселей, расположенных на лицевой панели блока управления.

На рисунке 4.2.1 представлен вид клавиатуры блока управления, расположенной на лицевой панели Установки, а в таблице 4.2.1 указано назначение клавиш.

Рисунок 4.2.1 Клавиатура блока управления

Таблица 4.2.1

Клавиша	Выполняемая функция
«0» «9»	Ввод цифровых величин, выбор нумерованного пункта меню
«.»	Ввод десятичной точки
«0.5L», «0.8L», «1.0», «0.8C», «0.5C»	Кнопки выбора предустановленных значений коэффициента мощности
«5%» «600%», «Imax», «0.5Imax»	Кнопки выбора предустановленных значений тока нагрузки
«Set»	Вход в режим установки параметров
«F1»	Вход в режим выбора параметров Установки, Выбор типа счетчика механический (r/kWh) подключен верхний разъем или электронный (p/kWh) подключен нижний разъем
«F2»	Вход в режим выбора параметров теста самохода и порога чувствительности
«F3»	Вход в режим установки калибровочного значения фазного угла
«M-test»	Запуск теста самохода
«St-Test»	Запуск теста порога чувствительности
«Adj»	Вход в режим подстройки значений выходных параметров
«↑», «↓»	Увеличение/уменьшение тока и напряжения (во время поверки), перемещение по пунктам меню
«Start»	Вход в режим определения погрешности (подача напряжения и тока на выходы усилителей) повторное нажатие - отключение тока
«ENT»	Ввод введенных значений (во время установки)
«ESC»	Отказ от ввода значений (во время установки), выключение нагрузки (во время теста),

На рисунке 4.2.2 представлена структура меню оператора.

Рисунок 4.2.2 Структура меню оператора

Меню оператора позволяет управлять Установкой в двух основных режимах:

- в режиме установки параметров тестов и оборудования,
- в различных режимах тестирования.

Примечание. Интерфейс оператора может изменяться в части порядка отображения информации, данные изменения не влияют на технические и метрологические характеристики Источника.

Интерфейс оператора блока управления Установки представляет собой иерархическую структуру вложенных меню. Назначение органов управления приведены в таблице 4.2.1. Не зависимо от того, в каком из пунктов меню находится Установка, в нижней части экрана показана 'подсказка' по клавишам управления в текущем режиме работы.. Навигация по меню (выбор того или иного пункта меню) осуществляется клавишами «↑», «↓» (выбранный в настоящее время пункт помечается маркером '*'). Активация выбранного пункта текущего меню (переход во вложенное меню, либо отображение соответствующего окна настройки параметров) производится клавишей «*ENT*», возврат в предыдущее меню – клавишей «*ESC*».

Окна настройки параметров отображают ту или иную информацию о параметрах Установки, поверяемых СИ или генерируемого сигнала и содержат одно или несколько изменяемых полей (далее – «поля»). Переход от одного поля к другому (если текущее окно содержит более одного изменяемого поля) осуществляется клавишами «↑», «↓». Если текущее окно содержит только одно изменяемое поле, клавиши «↑», «↓» могут выполнять другие функции (подробнее – см. ниже описание соответствующего окна настройки параметров). Принятие к исполнению модифицированных значений параметров осуществляется при нажатии на клавишу «*ENT*». По клавише «*ESC*» происходит выход в предыдущее меню.

Изменение численного значения параметра, отображаемого в активном (изменяемом) поле текущего окна настройки параметров, производится цифровыми клавишами ((0)-(0)-(0)-(0)) и приводит к непосредственному вводу значения активного поля в пределах предопределённых максимума и минимума, нажатие на клавишу «,» в процессе изменения значения активного поля приводит к переходу в режим ввода дробной части значения активного поля (если активное поле имеет дробную часть), ввод значения дробной части активного поля осуществляется после этого нажатием на цифровые клавиши

4.2.2.1 Параметры поверяемого счетчика «Set»

Для входа в режим Выбора и установки параметров поверяемого счетчика необходимо, находясь в основном экране режима измерений, нажать клавишу «*Set*».

В этом режиме Доступно 3 экрана:

- экран выбора схемы подключения поверяемого счетчика,

- экран установки электрических параметров поверяемого счетчика,

- экран установки параметров тестового сигнала.

При входе в режим Выбора и установки параметров поверяемого счетчика на дисплее Установки отображается экран выбора схемы подключения поверяемого счетчика (рисунок 4.2.3).

=== Output Model ===
[1]3P3W W STD*[5] 3P4W W STD[2]3P3W SIMU. 60°[6] 3P4W SIMU. 90°[3]3P3W SIMU. 90°[7] 3P4W var STD[4]3P3W var STD[8] 1P2W W STD
↑ to set parameter ↓ to set others 1-8 set select

Рисунок 4.2.3 Экран выбора схемы подключения поверяемого счетчика

В этом окне необходимо выбрать вариант включения поверяемого счетчика в сеть:

- однофазное двухпроводное, активная энергия;

- однофазное двухпроводное, реактивная энергия.

В нижней части экрана показана 'подсказка' по клавишам управления:

- выбор осуществляется цифровыми клавишами,

- переход к остальным окнам данного режима клавишами « \uparrow », « \downarrow ».

Находясь в экране выбора схемы подключения поверяемого счетчика (рисунок 4.2.3) нажмите клавишу «↑», чтобы перейти к окну установки электрических параметров поверяемого счетчика (рисунок 4.2.4).

Рисунок 4.2.4 Экран установки электрических параметров поверяемого счетчика

В этом окне необходимо установить следующие параметры поверяемого счетчика:

- номинальное значение напряжения;

- базовый ток;

- номинальное значение частоты (в диапазоне от 45.00 до 65.00 Гц);

- Т- количество импульсов усреднения при определении погрешности на номинальном токе;
- Tmax количество импульсов усреднения при определении погрешности на максимальном токе;
- Tmin- количество импульсов усреднения при определении погрешности на минимальном токе;
- С1- постоянная верхнего ряда счетчиков;
- С2- постоянная нижнего ряда счетчиков;
- максимальное значение тока;
- класс точности поверяемого счетчика.

Для выбора соответствующего параметра используются клавиши « \uparrow » и « \downarrow », при этом выбранный параметр отмечается меткой *, для ввода значения выбранного параметра нажмите любую числовую клавишу или десятичную точку и продолжите установку (любая пустая позиция будет установлена как константа "0".). В нижней части экрана показана 'подсказка' по клавишам управления:

- возврат к экрану выбора схемы подключения поверяемого счетчика клавишей «ESC»,

- выбор импульсного входа (рис. 3.2.4): верхнего – при подключении фотосчитывающей головки для механических счетчиков (r/kWh) или нижнего - при подключении электронных счетчи-ков (p/kWh) клавишей «*F1*».

Находясь в экране выбора схемы подключения поверяемого счетчика (рисунок 4.2.3) нажмите клавишу «↓», чтобы перейти к окну установки параметров тестового сигнала (рисунок 4.2.5).

Рисунок 4.2.5 Экран установки параметров тестового сигнала

В этом окне необходимо выбрать один из предустановленных вариантов параметров тестового сигнала:

- прямое или обратное направление протекания тока;

- один из четырех вариантов формы сигнала:

- синусоида (sine wave),
- субгармоники (wave group control),
- гармоники (harmonic wave),
- фазовое управление (phase angle control).

Для выбора соответствующего параметра используются клавиши « \uparrow » и « \downarrow », при этом выбранный параметр отмечается меткой *, для выбора значения нажимайте клавишу «*ENT*».

В режиме субгармоник формируется сигнал, представленный на рисунке 4.2.6.

Рисунок 4.2.6 Форма выходного сигнала в режиме субгармоник

В режиме фазового управления формируется сигнал, представленный на рисунке 4.2.7.

Рисунок 4.2.7 Форма выходного сигнала в режиме фазового управления

При выборе варианта сигнала с гармоническими составляющими (рисунок 4.2.8) появляются возможность ввода значений дополнительных параметров:

- номер гармоники (от 2 до 21),
- фаза гармоники (от 0⁰ до 359⁰),
- уровень гармоники напряжения (от 0 до 50%),
- уровень гармоники тока (от 0 до 50%).

Рисунок 4.2.8 Экран установки параметров тестового сигнала с гармоническими составляющими

Для ввода значения выбранного параметра нажмите любую числовую клавишу или десятичную точку и продолжите установку. В нижней части экрана показана 'подсказка' по клавишам управления:

- возврат к экрану выбора схемы подключения поверяемого счетчика клавишей «ESC»,
- выбор один из предустановленных вариантов клавишей «ENT».

4.2.2.2 Параметры Установки «F1»

Для входа в режим выбора параметров Установки необходимо, находясь в основном экране режима измерений, нажать клавишу «*F1*».

В этом режиме доступно 2 подрежима:

- экран установки параметров оборудования,

- экран установки системных параметров.

При входе в режим параметров Установки отображается экран выбора подрежима (рисунок 4.2.9).

Parameter select	
[*] device parameter	
[] system parameter	
ENTER to select ESC to back	

Рисунок 4.2.9 Экран выбора параметров Установки

В этом окне необходимо выбрать вариант установки параметров:

- установка параметров оборудования;

- установка системных параметров.

Для выбора используются клавиши «↑» и «↓», при этом выбранный подрежим отмечается меткой *, для входа нажмите клавишу **«ENT»**.

В нижней части экрана показана 'подсказка' по клавишам управления:

- возврат в основной экран режима измерений - клавиша «ESC»,

- выбор одного из подрежимов - клавиша «ENT».
В режиме установки параметров оборудования (рисунок 4.2.10) необходимо выбрать и установить значения 4-х параметров:

· количество – число посадочных мест (устройств навески) Установки,

- поиск метки - при включении этой функции происходит проверка правильности настройки фотоголовки,

- подстройка угла - при включении этой функции при поверке происходит постоянная автоматическая программная корректировка фазы,

- автоматическое переключение диапазона - при включении этой функции при поверке обеспечивается постоянная автоматическая программная корректировка амплитуды выходного сигнала.

Рисунок 4.2.10 Экран установки параметров оборудования

Примечание. Если тестовый сигнал синусоидальный (чистый синус), то рекомендуется корректировать фазу, если выходной сигнал имеет гармонические составляющие - то амплитуду выходного сигнала.

Для выбора используются клавиши «↑» и «↓», при этом выбранный параметр отмечается меткой *, для включения/отключения функций используется клавиша «*ENT*».

В нижней части экрана показана 'подсказка' по клавишам управления:

- возврат в предыдущее меню - клавиша «ESC»,

- для ввода цифровых значений - клавиши «0» - «9».

При входе в режим установки системных параметров необходимо ввести пароль (рисунок 4.2.11).

Рисунок 4.2.11 Экран запроса пароля

В зависимости от введенного пароля доступно два экрана системных параметров:

- первый экран при вводе пароля 6303 (рисунок 4.2.12);
- второй экран при вводе пароля 6300 (рисунок 4.2.13).

Рисунок 4.2.12 Экран системных параметров 6303

В первом окне (при вводе пароля 6303) необходимо установить значения калибровочных коэффициентов:

- Ua амплитудный коэффициент напряжения;
- Іа амплитудный коэффициент тока;
- ФІа фазный коэффициент тока;
- Uqa коэффициент отклонения напряжений;
- Iqa коэффициент отклонения тока.

При изменении значений коэффициентов, происходит корректировка выходных сигналов.

Для выбора используются клавиши «↑» и «↓», при этом выбранный параметр отмечается меткой *, для ввода значения выбранного параметра нажмите любую числовую клавишу или десятичную точку и продолжите ввод.

В нижней части экрана показана 'подсказка' по клавишам управления:

- возврат в предыдущее меню клавиша «ESC»,
- для ввода цифровых значений клавиши «0» «9».

Рисунок 4.2.13 Экран системных параметров 6300

Во втором окне (при вводе пароля 6300) необходимо установить значения следующих системных параметров:

- первое приращение - скорость нарастания выходного сигнала, при увеличении этого параметра возможно срабатывание защиты, рекомендуется устанавливать значение в диапазоне 20-30 %;

- язык интерфейса;

- I_{max} – максимально разрешенное значение тока в рабочем режиме;

- pulse channels – выбор импульсного канала 1- верхний разъем или 2 – нижний разъем (см. рис.3.2.4);

- CT number – возможные значения 8 или 9.

Для выбора используются клавиши « \uparrow » и « \downarrow », при этом выбранный параметр отмечается меткой *, для ввода значения выбранного параметра нажмите любую числовую клавишу или десятичную точку и продолжите ввод, *, для выбора предустановленных значений нажимайте клавишу «ENT»..

В нижней части экрана показана 'подсказка' по клавишам управления:

- возврат в предыдущее меню - клавиша «ESC»,

- для ввода цифровых значений - клавиши «0» - «9».

4.2.2.3 Параметры теста самохода и порога чувствительности «F2»

Для входа в режим выбора параметров теста необходимо, находясь в основном экране режима измерений, нажать клавишу «F2».

В режиме установки параметров теста (рисунок 4.2.14) необходимо задать значения следующих параметров:

- Сгеер U –установка напряжения режима самохода;
- Сгеер І-установка тока режима самохода;
- Стеер Т- время теста режима самохода;
- Starting I установка стартового тока при проверки чувствительности;
- Starting Т- время теста проверки порога чувствительности.

Setup of creep test and starting test [*] Creep U: 110% Un [] Creep I: 020.0 mA [] Creep T: 10 min [] Starting I: 020.0 mA [] Starting T: 10 min	
0-9 to set ESC to back	

Рисунок 4.2.14 Экран выбора параметров теста самохода и порога чувствительности

Используйте клавиши «↑» и «↓» для выбора соответствующих параметров, перемещая метку *, и цифровые клавиши для ввода значений. Затем нажмите клавишу «*ENT*», чтобы установить параметры тестирования самохода и порога чувствительности. В дальнейшем тест самохода и тест порога чувствительности будут запускаться в соответствии с выбранными параметрами.

В нижней части экрана показана 'подсказка' по клавишам управления:

- возврат в предыдущее меню клавиша «ESC»,
- для ввода цифровых значений клавиши «О» «9».

4.2.2.4 Калибровка углов между током и напряжением «F3»

Для входа в режим калибровки углов между током и напряжением необходимо, находясь в основном экране режима измерений, нажать клавишу «F3».

В этом режиме (рисунок 4.2.15) необходимо задать значения калибровочных коэффициентов для углов относительно напряжения фазы А.

Рисунок 4.2.15 Экран задания калибровочных коэффициентов углов

При изменении значений коэффициентов, происходит корректировка выходных сигналов.

Для ввода значений коэффициентов нажмите любую числовую клавишу или десятичную точку и продолжите ввод.

В нижней части экрана показана 'подсказка' по клавишам управления:

- возврат в предыдущее меню - клавиша «ESC»,

- для ввода цифровых значений - клавиши «0» - «9».

4.2.3 Режим тестирования

Во время тестирования счетчиков непрерывно отслеживается исправность усилителей мощности. Если усилитель мощности будет неисправен, то напряжение и ток будут отключены, а на дисплее появится сообщение о неисправности.

При включении режима тестирования сразу после подачи питания Установку может кратковременно (на несколько секунд) срабатывать защита усилителей мощности, при этом раздается звуковой сигнал, загорается соответствующий индикатор неисправности усилителя тока или/и напряжения (*«U warming alarm», «I warming alarm» на р*исунке 3.2.1) и на дисплее В нижней части экрана появляется один из вариантов 'подсказки' (рисунок 4.2.16):

- сработала защита по току и напряжению, для сброса нажмите клавишу «F1»,
- сработала защита по напряжению, для сброса нажмите клавишу «F1»,

	*	U	Ι	W	
	A	0.000	0.000	0.000	
	В	0.000	0.000	0.000	
	С	0.000	0.000	0.000	
;	3P4W W STD		Un=220.0V	lb=10.00A	
	Forward I		F=50.00Hz	Imax=100.00A	
(Φ order ABC		T=02	l=100%lb	
	Harmonic02		C1=01800.00	C2=01800.00	
	Current Voltage protect F1 to reset				

- сработала защита по току, для сброса нажмите клавишу «F1».

Рисунок 4.2.16 Экран запроса на сброс ошибки усилителей мощности

4.2.3.1 Режим определения погрешности

Вход в режим определения погрешности возможен из основного экрана измерений (рисунок 3.3.2).

Для входа в режим определения погрешности (рисунок 4.2.17) необходимо после установки всех параметров нажать клавишу «*Start*», чтобы подать ток и напряжение на входы поверяемых СИ, на дисплее на несколько секунд появится сообщение, "Waiting!", после чего ток и напряжение будут поданы на выходы усилителей мощности.

*	U	I	W			
А	0.000	0.000	0.000			
В	0.000	0.000	0.000			
С	0.000	0.000	0.000			
3P4\	W W STD	Un=220.0V	Ib=10.00A			
Forw	vard I	F=50.00Hz	Imax=100.00A			
Φ order ABC		T=02	l=100%lb			
Harn	nonic02	C1=01800.00	C2=01800.00			
	Adj to adjust Start to pause					

Рисунок 4.2.17 Экран режима определения погрешности

Для снятия тока с выходов необходимо повторно нажать клавишу *«Start»* (при этом напряжение с выходов не снимается), для того чтобы подать их снова нажмите клавишу *«Start»* еще раз.

*	U	I	W	
А	0.000	0.000	0.000	
В	0.000	0.000	0.000	
С	0.000	0.000	0.000	
3P4	W W STD	Un=220.0V	lb=10.00A	
Forv	vard I	F=50.00Hz	Imax=100.00A	
0 D	rder ABC	T=02	l=100%lb	
Harmonic02		C1=01800.00	C2=01800.00	
Start to output current				

Рисунок 4.2.18 Экран определения погрешности в режиме паузы

В нижней части экрана показана 'подсказка' по клавишам управления:

- переход в режим подстройки значений выходных параметров - клавиша «ADJ»,

- включение\выключение подачи ток и напряжение на входы поверяемых СИ - клавиша «Start».

Для быстрого переключения между стандартными значениями коэффициента мощности (изменения угла между током и напряжением) используйте клавиши «0.5L», «0.8L», «1.0», «0.8С», «0.5L» на клавиатуре блока управления Установки.

Для быстрого переключения между стандартными значениями тока нагрузки используйте клавиши «5%», «10%», «20%», «50%», «100%», «200%», «400%», «600%», «Imax», «0.5Imax» на клавиатуре блока управления Установки.

В Ручном режиме работы возможна подстройка значений выходных параметров напряжения, тока и угла между ними с заданным шагом, для того что бы войти в этот режим находясь в режиме определения погрешности (рисунок 4.2.17) нажмите клавишу «ADJ».

*	U		I	W	
А	0.000		0.000	0.000	
В	0.000		0.000	0.000	
С	0.000		0.000	0.000	
	[*] [] []	* U * ABC 10%	I	C 0.01%	
	F3 ENTER to select †↓ to adjust				

Рисунок 4.2.19 Экран корректировки параметров выходного сигнала в ручном режиме

Для перемещения между строкой выбора параметра и строкой выбора шага изменения параметра нажимайте клавишу «F3».

Нажимайте клавишу «*Enter*», чтобы выбрать параметр U, I, Φ и шаг изменения параметра 10%, 1%, 0.1%, 0.01% или 10°, 1°, 0.1°, 0.01° в зависимости от выбранного параметра.

После выбора корректируемого параметра и шага его изменения нажимайте « \uparrow » или « \downarrow » для корректировки выходного тока или напряжения, которые будут увеличиваться или уменьшаться, или для изменения угла между током и напряжением (опережение или отставание).

Выбранный параметр и шаг изменения его значения помечаются маркером * (рисунок 4.2.19). В нижней части экрана показана 'подсказка' по клавишам управления:

- выбор параметра или шага изменения клавиши «F3» и «Enter»,
- изменения значения выбранного параметра на выходе усилителей клавиши клавиши «↑», «↓».

4.2.3.2 Тест порога чувствительности «St-Test»

Вход в режим определения порога чувствительности возможен из основного экрана измерений (рисунок 3.3.2).

Для запуска теста определения порога чувствительности (рисунок 4.2.20) необходимо после установки всех параметров нажать клавишу «St-Test», чтобы подать ток и напряжение на входы поверяемых СИ, на дисплее на несколько секунд появится сообщение, "Waiting!", после чего ток и напряжение будут поданы на выходы усилителей мощности.

*	U	I	W		
А	0.000	0.000	0.000		
В	0.000	0.000	0.000		
С	0.000	0.000	0.000		
Starting I: 020.0 mA					
	Startin	[01-01]			
	Startin	g T: 08 min	[02-03]		
ESC to back					

Рисунок 4.2.20 Экран теста порога чувствительности

Когда тест закончится, ток и напряжение с выходов усилителей будут сняты.

В нижней части экрана показана 'подсказка' по клавишам управления: - для возврата в предыдущее меню - клавиша «ESC».

А) поиск режима автоматической установки параметров

Если у испытываемого оборудования есть функция автоматической установки параметров, нажмите F5, чтобы ввести значения автоматически. После того как параметры будут автоматически нажмите ENTER, чтобы начать тест порога чувствительности.

Нажмите клавишу ESC, чтобы вернуться в предыдущее меню.

В) установка параметров (нажмите ключ «St-Test»),

4.2.3.3 Тест самохода «M-Test»

Вход в режим определения самохода возможен из основного экрана измерений (рисунок 3.3.2). Для запуска теста самохода (рисунок 4.2.21) необходимо после установки всех параметров нажать клавишу «*M-Test*», чтобы подать ток и напряжение на входы поверяемых СИ, на дисплее на несколько секунд появится сообщение, "Waiting!", после чего напряжение будет подано на выходы усилителей мощности.

*	U	I		W	
А	0.000	0.000		0.000	
В	0.000	0.000		0.000	
С	0.000	0.000		0.000	
	Cree Cree	p U: 264.0V p T: 08 min	[01-01]		
	Cree	p T: 08 min	[02-03]		
	ESC to back				

Рисунок 4.2.21 Экран теста самохода

Когда тест закончится, напряжение с выходов усилителей будет снято.

Примечание. Для индукционных счетчиков м.б. реализована функция синхронизации счетчиков по метке на диске. При нажатии на клавишу *«M-Test»* подается напряжение и ток на входы поверяемых СИ. Диски начинают крутиться, и как только фотосчитывающие головки «поймают» метки, подача тока резко прекратится, и метки на дисках будут смотреть прямо на фотосчитывающие головки. Далее при проверки на самоход регистрируются отклонения. Если метка уйдет по часовой стрелке – то счетчик тест не прошел.

В нижней части экрана показана 'подсказка' по клавишам управления: - для возврата в предыдущее меню - клавиша «ESC».

4.3 Работа Установки при управлении от блока управления HS-6633

Установки могут комплектоваться различными модификациями блоков управления (БУ), что не сказывается на их функциональности.

Ниже описаны изменения в интерфейсе оператора при работе Установки с блоком управления HS-6633.

4.3.1 Интерфейс оператора блока управления HS-6633

Интерфейс оператора БУ HS-6633состоит кнопочной клавиатуры (рисунок 4.3.1) и графического дисплея, расположенных на лицевой панели блока управления.

На рисунке 4.3.1 представлен вид клавиатуры блока управления, расположенной на лицевой панели Установки, а в таблице 4.3.1 указано назначение клавиш.

Таблица 4.3.1	
Клавиша	Выполняемая функция
«0» «9»	Ввод цифровых величин, выбор нумерованного пункта меню
«.»	Ввод десятичной точки
«0.5L», «0.8L», «1.0», «0.8C», «0.5C»	Кнопки выбора предустановленных значений коэффициента мощности
«1%» «400%», «Imax», «0.5Imax»	Кнопки выбора предустановленных значений тока нагрузки
«Set»	Вход в режим установки параметров
«F1»	Запуск теста самохода
«F2»	Запуск теста порога чувствительности
«Adj»	Вход в режим подстройки значений выходных параметров
«←», «→», «↑», «↓»	Увеличение/уменьшение тока и напряжения (во время поверки), перемещение по пунктам меню
«UI»	Вход в режим определения погрешности (подача напряжения и тока на выходы усилителей)
«————»	Ввод введенных значений во время установки, переход в режим управления от ПК, переход в режим подстройки значений выходных параметров, Enter
«ESC»	Отказ от ввода значений, выключение нагрузки (во время теста),
«Ua/uab», «Ub», «Uc/Ucb»	выбор фазы напряжения (включение/отключение)
«Ia», «Ib», «Ic»	выбор фазы тока (включение/отключение)
«Forw»	Кнопка переключения прямого и обратного тока

Рисунок 4.3.1 Клавиатура блока управления HS-6633

4.3.2 Режим измерений

При включении питания Установки производится самотестирование оборудования и начальная инициализация. Через 3-5 секунд на дисплее блока управления появится окно режима измерений:

Ua:0. 00	la:0. 0000		Pa:0. 0000
Ub:0. 00	lb:0. 0000		Pb:0. 0000
Uc:0. 00	lb:0. 0000		Pc:0. 0000
3P4W W	Un=240V		Forward
	In=5A		Harmonic
1200p	100%lb	PF=1.0	T=10

4.3.3 Настройка параметров

Для перехода в режим установки параметров нажмите клавишу «Set»:

Для выбора типа сети, параметров поверяемого счетчика, параметров теста самохода и теста порога чувствительности, установки выходных параметров, настройки параметров Установки, заводских установок используйте клавиши «←↑↓→».

Для подтверждения выбора предусмотренного варианта нажмите клавишу « ----l».

Для возврата в главное меню нажмите клавишу «ESC».

4.3.3.1 Выбор типа сети

	Meters Type	
3P3W W	\rightarrow	3P3W60° Var
3P3W Var		3P3W90° Var
3P4W W		3P4W90° Var
3P4W Var		1P2W W
1P2W Var		

Для выбора типа сети поверяемого счетчика используйте клавиши «←↑↓→», символ «→» появится напротив выбранного типа.

Для возврата в главное меню нажмите клавишу «ESC».

4.3.3.2 Настройка параметров поверяемого счетчика

Для выбора соответствующих параметров настройки используйте (клавиши «←↑↓→»), символ «→» появится напротив выбранного типа. Используйте цифровые клавиши для ввода числовых значений выбранного параметра.

Для подтверждения выбора нажмите клавишу « ---- l».

Номинальное значение частоты задается в диапазоне от 45.00 до 65.00 Гц.

Для выбора типа постоянной поверяемых счетчиков необходимо нажать клавишу «Set». Если единица измерения постоянной выражена в «p/kWh», то текущие настройки применимы для электронных счетчиков (выраженные символом p), если единицей измерения постоянной является «r/kWh», то текущие настройки применимы для механических счетчиков (выраженные символом r).

4.3.3.3 Параметры теста самохода и теста порога чувствительности

Для выбора соответствующих параметров настройки используйте (клавиши «←↑↓→»), символ «→» появится напротив выбранного типа. Используйте цифровые клавиши для ввода числовых значений выбранного параметра.

4.3.3.4 Настройка выходных параметров

Для выбора соответствующих параметров настройки используйте (клавиши «←↑↓→»), символ «→» появится напротив выбранного типа. Используйте цифровые клавиши для ввода числовых значений выбранного параметра.

Для выбора формы волны (синусоидальная волна, контроль группы волн, гармоническая волна, контроль фазного угла) нажмите клавишу « ----l».

Диапазон установки фазы гармоники 0° - 359°.

Эффективный диапазон гармоник 2 - 21.

Коэффициент гармоник 0 - 40%.

При установке коэффициентов отдельных гармоник значение общего коэффициента несинусоидальности не должно превышать 40%.

4.3.3.5 Настройка параметров Установки

Для выбора соответствующих параметров настройки используйте (клавиши «←↑↓→»), символ «→» появится напротив выбранного типа. Используйте цифровые клавиши для ввода числовых значений выбранного параметра. Для подтверждения выбора нажмите клавишу « ←— !».

Meters (количество счетчиков) – число посадочных мест (устройств навески) Установки.

Findmark (поиск метки): включение данной функции во время запуска теста на самоход или теста порога чувствительности означает, что программа во время теста на самоход или теста порога чувствительности сначала будет искать метку. Для включения/отключения данной функции нажмите клавишу «ENTER»..

Angle modify (**Подстройка угла**): при включении этой функции при поверке происходит постоянная автоматическая программная корректировка фазы (**Примечание:** Если тестовый сигнал синусоидальный (чистый синус), то рекомендуется корректировать фазу, если выходной сигнал имеет гармонические составляющие - то амплитуду выходного сигнала).

Range modify (Подстройка диапазона): при включении этой функции при поверке обеспечивается постоянная автоматическая программная корректировка амплитуды выходного сигнала.

4.3.3.6 Заводские установки

Вход в режим настройки заводских установок возможен только под паролем. Пользователи не имеют доступа к данному паролю.

4.3.4 Тест самохода и тест порога чувствительности

4.3.4.1 Тест самохода

После установки параметров теста самохода нажмите клавишу «**F1**» для запуска теста самохода, после чего на дисплее блока управления индицируется следующее изображение:

Ua:220. 01	la:0. 1006	Pa:22. 3342
Ub:220. 00	Ib:	Pb:
Uc:220. 02	lc:	Pc:
	Creep	

После завершения теста напряжение с выходов усилителей будет снято. Для возврата к предыдущему меню нажмите клавишу «**ESC**».

4.3.4.2 Тест порога чувствительности

После установки параметров теста порога чувствительности нажмите клавишу «**F2**» для запуска теста порога чувствительности.

Примечание. Во время поверки счетчиков непрерывно отслеживается исправность усилителей мощности. Если усилитель мощности будет неисправен, то напряжение и ток будут отключены, а на дисплее появится сообщение о срабатывании защиты. После устранения неисправности процесс испытания счетчиков возобновится.

4.3.4.3 Поиск метки в процессе тестов на самоход и порога чувствительности

Если испытательное оборудование имеет функцию поиска метки, то для запуска теста на самоход (теста порога чувствительности) после нахождения метки нажмите клавишу « — l».

4.3.5 Регулировка выходного напряжения, тока и фазы

Для корректировки (увеличения или уменьшения значений тока и напряжения или корректировки угла) используйте клавиши «↑» , «↓».

Для выбора корректируемого параметра U, I, Ф, нажмите клавишу «Set».

Для выбора фазы корректируемого параметра «Uabc/Ua/Ub/Uc», «Iabc/Ia/Ib/Ic», «ФІ/Фа/Фb/Фс/ФUa/ФUb», нажмите клавишу «**Forw**».

Для выбора диапазона корректировки «10%», «1%», «0.1%», «0.01%» или «10°», «1°», «0.1°», «0.01°», нажмите клавишу « \leftrightarrow ».

4.3.6 Управление от ПК

Для перехода в режим управления от ПК нажмите клавишу « ----l», находясь в режиме измерений.

4.4 Эталонный счетчик

Не зависимо от того в каком режиме работы находится Установка в автономном, или от ПК на дисплее эталонного счетчика отображаются значения всех параметров измеренных эталонным счетчи-ком.

4.4.1 Интерфейс оператора эталонного счетчика

Интерфейс оператора эталонного счетчика состоит из 5-и кнопочной клавиатуры (рисунок 4.4.1) и буквенно-цифрового дисплея размером 40(ширина)*4(высота) знакомест, расположенных на лицевой панели эталонного счетчика. В таблице 4.4.1 указано назначение клавиш управлении эталонного счетчика.

Примечание. Интерфейс оператора может изменяться в части порядка отображения информации, данные изменения не влияют на технические и метрологические характеристики эталонного счетчика.

Таблица	4.4.1

. . .

Клавиша	Выполняемая функция		
«I»	`Irng` - переход в режим установки токового диапазона эталонного счетчика		
«U» `Urng` - переход в режим установки диапазона по напряжению эталонного счет			
«Mmode»	переход в режим установки типа мощности		
«Enter»	r» подтверждение выбранного значения (во время установки)		
«Escape»	отмена выбранного значения (во время установки)		
«<-»	перемещение влево/вверх по пунктам меню		
«->»	перемещение вправо/вниз по пунктам меню		

Рисунок 4.4.1 Экран измерений эталонного счетчика

4.4.2 Режим Измерений

При включении питания Установки на дисплее эталонного счетчика отображается главное окно с текущими значениями измеряемых эталонным счетчиком параметров (рисунок 4.4.2).

U1:241.94 la:0.0000 ΣΡ:0.0000	V U2:241.94 A Ib:0.0000	V U3:241.94 V A Ic:0.0000 A E:50 001 Hz
Irng	Urng M mode	e Enter Escape

Mmode

Рисунок 4.4.2 Экран измерений эталонного счетчика

Enter

Escap

При включении питания Установки на дисплее эталонного счетчика возможно отображение одного из четырех видов главного окна с различными отображаемыми параметрами. Для выбора вида главного окна необходимо находясь в главном окне нажать кнопку «Enter», при этом произойдет переход в режим выбора типа главного окна (рисунок 4.4.3).

Рисунок 4.4.3 Экран выбора типа главного окна эталонного счетчика

Ниже (рисунок 4.4.4) приведены все возможные типа главного окна эталонного счетчика.

U1:241.94 la:0.0000 ΣP:0.0000 lrng	V U2:241.94 A Ib:0.0000 kW PF:0.0000 Urng M mode	V U3:241.94 V A Ic:0.0000 A F:50.001 Hz Enter Escape
Ua:241.94	Ub:241.94	Uc:241.94 V
la:0.0000	lb:0.0000	lc:0.0000 A
Θa:0.0000	Θb:0.0000	Θc:50.001 ⁰
lrng	Urng M mode	Enter Escape
Pa:241.94	4 Pb:241.94	Pc:241.94 W
Qa:0.000	Qb:0.0000	Qc:0.0000 var
PFa:0.000	0 PFb:0.0000	PFc:50.001
lrng	Urng Mimode	Enter Escape
ΣP:0.0	000 kW	PF:0.0000
ΣΡ:0.00 ΣQ:0.00	000 kW 000 kvar	PF:0.0000 F:50.001 Hz
ΣΡ:0.00 ΣQ:0.00 ΣS:0.00	000 kW 000 kvar 000 kBA	PF:0.0000 F:50.001 Hz

Рисунок 4.4.4 Виды главного окна эталонного счетчика

В главном окне эталонного счетчика могут отображаться текущие значения измеряемых параметров в различных сочетаниях (рисунок 4.4.2):

- действующее значение напряжения,
- действующее значение тока,
- углы между первыми гармониками тока и напряжения,
- активные мощности,
- реактивные мощности,
- полная мощность,
- -частота,
- коэффициенты мощности.

4.4.3 Меню Настроек

Меню настроек эталонного счетчика используется при его автономной работе, при работе в составе Установки данное меню не используется, управление настройками эталонного счетчика осуществляется от блока управления посредством клавиатуры блока управления в ручном режиме работы Установки, либо от ПК в автоматическом режиме.

- У эталонного счетчика есть три режима настроек:
- установка токового диапазона,
- установка диапазона напряжения,
- установка типа мощности.

Для входа в режим установки токового диапазона (рисунок 4.4.3) необходимо нажать кнопку «I» (на дисплее подписана как «Irng»). Выбор осуществляется перемещением маркера с помощью клавиш «<-» «->» и нажатием кнопки «Enter», при отказе от выбора надо нажать кнопку «Escape». В обоих случаях произойдет переход в главное окно измерений.

В эталонном счетчике HY5303C-22D реализовано 12 токовых диапазонов:

100A; 50A; 25A;10A; 5A; 2.5A; 1A; 0.5A; 0.25A; 0.1A; 0.05A; 0.025A.

Рисунок 4.4.3 Экран выбора токового диапазона

Для входа в режим установки диапазона по напряжению (рисунок 4.4.4) необходимо нажать кнопку «U» (на дисплее подписана как «Urng»). Выбор осуществляется перемещением маркера с помощью клавиш «<-» «->» и нажатием кнопки «**Enter**», при отказе от выбора надо нажать кнопку «**Esсаре**». В обоих случаях произойдет переход в главное окно измерений.

В эталонном счетчике HY5303C-22D реализовано диапазона по напряжению: 480B, 240B, 120B и 60B.

Рисунок 4.4.4 Экран выбора диапазона по напряжению

Для входа в режим установки типа мощности (рисунок 4.4.5) необходимо нажать кнопку «Mmode». Выбор осуществляется перемещением маркера с помощью клавиш «<-» «->» и нажатием кнопки «Enter», при отказе от выбора надо нажать кнопку «Escape». В обоих случаях произойдет переход в главное окно измерений.

В эталонном счетчике HY5303C-22D реализована возможность выдачи на частотные выходы частоты пропорциональной либо активной (P), либо реактивной (Q) мощности.

Рисунок 4.4.5 Экран выбора типа мощности

4.5 Блок поверки точности хода часов

-- . . .

Примечание. только для варианта исполнения НЕВА-Тест 6303 Т с блоком для поверки точности хода часов.

Технические характеристики Блока поверки точности хода часов (далее Блок) приведены в таблице 4.5.1.

Таолица 4.5.1		
Характеристика	Значение	
Точность хода часов	5×10 ⁻⁷	
Диапазон входной частоты	$\leq 10 MHz$	
Уровень входного сигнала	TTL level	

На рисунке 4.5.1 представлен вид задней панели ВА-3.1.

Рисунок 4.5.1 Задняя панель Блока поверки точности хода часов

Порт RS485 полнодуплексной линии связи и для подключения к источнику сигнала. Порт input для внешнего образцового счетчика (P1—H, P3—L) Порт выхода: передача 8000 стандартного импульса (P1—H, P3—L)

4.5.1 Интерфейс оператора Блока поверки точности хода часов

Примечание. Интерфейс оператора может изменяться в части порядка отображения информации, данные изменения не влияют на технические и метрологические характеристики эталонного счетчика.

Интерфейс оператора Блока состоит из 4-х клавиш, 1-го переключателя (рисунок 4.5.2) и буквенно-цифрового дисплея. В таблице 4.5.2 указано назначение клавиш управлении.

Рисунок 4.5.2 Лицевая панель Блока поверки точности хода часов

лица 1.5.2	
Клавиша	Выполняемая функция
«Start»	запуск определения погрешности
«↓»	возврат на главный экран
«↑»	выбор и установка параметров
«< - »	Переход к следующему окну, установка параметров, перемещение курсора
переключатель «pulse/s/Crystal oscillator»	выбор метода поверки поверяемого счетчика

Таблица 4.5.2

После включения будут установлены следующие значения параметров по умолчанию:

- частота на выходе: 100KHz

- погрешность отображается как error/s (%)

- статус проверки для непрерывной проверки.

На дисплее Блока появиться Экран заставки:

HPU-1012

Для перехода в главное меню нажмите клавишу «↑», после чего появиться следующее изображение:

Fun = 1

Перечень всех функций главного меню приведено в таблице 4.5.3.

Таблица 4.5.3

Номер функции	Описание функции
1	Проверка точности хода часов clock test
2	Для функции Crystal oscillator signal test
3	Изменение частоты выходного сигнала frequency division number
4	Режим установки размерности отображения погрешности Error display mode
5	Для установки метода испытания прибора

4.5.2 Режимы установки параметров

4.5.2.1 Изменение частоты выходного сигнала

 Диапазон коэффициента деления:
 2 ~ 9999

 Диапазон частоты на выходе:
 2.5MHz ~ 500Hz

Нажимая клавишу «↑» выберете режим 3, после чего появиться следующее изображение:

Fun = 3

Затем нажмите «<-» для перехода в режим изменения частоты выходного сигнала, после чего появиться следующее окно:

F=0000

Далее необходимо ввести значение коэффициента деления частоты. После нажатия клавиши частота на выходе изменится в соответствии с заданным значением.

Частота на выходе рассчитывается по формуле:

F = 5МГц / Кд

Например. Если надо задать частоту на выходе 10КНг, то коэффициента деления частоты

должен быть 500. F = 5MГц / Кд = 5МГц / 500=10кГц

4.5.2.2 Режим установки размерности отображения погрешности

Нажимая клавишу «↑» выберете режим 4, после чего появиться следующее изображение:

Fun = 4

Затем нажмите «<-» для перехода в режим установки размерности отображения погрешности, после чего появиться следующее окно:

$$ERR = S$$

Далее с помощью клавиши «↑» необходимо выбрать одно из двух значений размерности отображения погрешности в соответствии с таблицей 4.5.4.

Таблица 4.5.4

Значение	Описание
ERR = s	Относительная погрешность / секунд (%)
ERR = d	Относительная погрешность / день (сек.)

После завершения установки с помощью клавиши «↓» можно вернуться в главное меню и продолжить устанавливать другие параметры

4.5.2.3 Установка методов поверки прибора

Нажимая клавишу «↑» выберете режим 5, после чего появиться следующее изображение:

Fun = 5

Затем нажмите «<-» для перехода в режим установки методов поверки прибора, после чего появиться следующее окно:

STEP = 1

Далее с помощью клавиши «↑» необходимо выбрать один из двух методов поверки прибора в соответствии с таблицей 4.5.5.

Таблица 4.5.5

Значение	Описание
STEP = 1	Для автоматической непрерывной проверки импульса поверяемого счетчика
STEP = 0	Для поэтапной проверки импульса поверяемого счетчика в ручном режиме

4.5.3 Режимы работы

4.5.3.1 Проверка точности хода часов

Для проведения испытаний точности хода часов счетчика установите переключатель «pulse/s/Crystal oscillator» Блока в положение 'pulse/s'.

Нажимая клавишу «↑» выберете режим 1, после чего появиться следующее изображение:

Fun = 1

Затем нажмите «<-» для перехода в режим установки продолжительности проверки, после чего появиться следующее окно:

P=00

Далее нажимая клавишу «<-» необходимо установить временной диапазон испытания поверяемого счетчика, значения изменяются циклически от 1 с до 99 с. После нажатия клавиши «↑» будет установлено заданное значение.

Для запуска режима определения погрешности нажмите клавишу «**Start**», после чего начнется измерения точности многофункционального счетчика (pulse/s) и появиться следующее окно:

TEST...

После завершения измерений отобразится значение погрешности (Error/s (%)) в размерности установленной режиме 4 (установка размерности отображения погрешности).

Например. В случае если была установлена размерность Error/s (%), то отображаемое на дисплее значение исчисляется в %:

0.0001345

т.е. погрешность $0.0001345\% = 1.345 \times 10^{-6}$.

В случае если была установлена размерность error/day (c), то отображаемое на дисплее значение исчисляется в ежедневной разнице секунд:

0.116208

т.е. погрешность 0.116208 с за сутки.

В случае если в режиме 4 (установка методов поверки прибора) была выбрана поэтапная проверку в ручном режиме, то проверка будет осуществляться при каждом нажатии клавиши «**Start**».

В случае если произойдет ошибка, появиться следующее изображение:

BIg ERR

Это говорит о том, что отсутствует поверяемый импульс или ошибка слишком велика (big error).

Для выхода из режима проверки и возвратая в главное меню необходимо нажать клавишу «↓»

4.5.3.2 Проверка точности частоты кварцевого генератора

Диапазон входной частоты: ≤10MHz, Уровень входного сигнала: TTL level)

Для проведения испытаний точности частоты кварцевого генератора установите переключатель **«pulse/s/Crystal oscillator»** Блока в положение 'Crystal oscillator'.

Нажимая клавишу «↑» выберете режим 2, после чего появиться следующее изображение:

Fun = 2

Затем нажмите «<-» для перехода в режим установки продолжительности проверки, после чего появиться следующее окно:

F=00000

Далее нажимая клавиши «↓» и «<-» необходимо установить значение частоты кварцевого генератора поверяемого счетчика

Например. Частота кварцевого генератора поверяемого многофункционального счетчика будет выглядеть следующим образом: F=100×103=100KHz.:

F=00100

После нажатия клавиши «<-» будет установлено заданное значение частоты и на дисплее появится окно с запросом о вводе числа импульсов для проверки кварцевого генератора:

P=00000

Далее нажимая клавиши «↓» и «<-» необходимо установить числа импульсов.

Например. Число импульсов проверки кварцевого генератора: $P=100 \times 10^3 = 100K$. Преобразовывается по времени: $S=P \times 1/F = 100 \times 1/100 = 1s$

P=00100

Для запуска режима определения погрешности кварцевого генератора нажмите клавишу «Start», после чего начнется измерения и появиться следующее окно:

TEST...

После завершения измерений отобразится значение погрешности в размерности установленной режиме 4 (установка размерности отображения погрешности).

Например. В случае если была установлена размерность Error/s (%), то отображаемое на дисплее значение исчисляется в %:

0.0001345

т.е. погрешность $0.0001345\% = 1.345 \times 10^{-6}$.

В случае если была установлена размерность error/day (c), то отображаемое на дисплее значение исчисляется в ежедневной разнице секунд:

0.116208

т.е. погрешность 0.116208 с за сутки.

В случае если в режиме 4 (установка методов поверки прибора) была выбрана поэтапная проверку в ручном режиме, то проверка будет осуществляться при каждом нажатии клавиши «**Start**».

В случае если произойдет ошибка, появиться следующее изображение:

BIg ERR

Это говорит о том, что отсутствует поверяемый импульс или ошибка слишком велика big error).

Для выхода из режима проверки и возврата в главное меню необходимо нажать клавишу «↓»

4.5.4 Работа в составе Установки

Блоком для поверки точности хода часов комплектуются только Установки в варианте исполнения HEBA-Tect 6303 T.

Для поверки точности хода часов поверяемых счетчиков необходимо подключить выход временных импульсов счетчиков к нижним разъемам импульсных входов Установки (см. рисунок 3.2.4).

Включение теста поверки точности хода часов поверяемых счетчиков возможно только при управлении Установкой от ПК (см. приложение Б).

При запуске теста поверки точности хода часов на индикаторах каждого устройства определения погрешности HS 6000В появляется число 60, которое будет уменьшаться по мере поступления импульсов с выхода проверки точности часов счетчиков (1 импульс – 1 секунда). После поступления 60 импульсов на ПК появляется погрешность измерения времени одного импульса

5 Техническое обслуживание

5.1 Техническое обслуживание производится с целью обеспечения бесперебойной работы, поддержания эксплуатационной надежности и повышения эффективности использования Установки.

5.2 При проведении технического обслуживания необходимо соблюдать меры безопасности, приведенные в разделе 1 и 3.3 настоящего РЭ.

5.3 Текущее техническое обслуживание заключается в выполнении операций:

очистки рабочих поверхностей, клавиатуры и дисплея,

очистки контактов соединителей в случае появления на них окисных пленок и грязи и проверке их крепления.

№ п.п.	Неисправность	Способ устранения
1	Установка не включается.	Проверьте, номинальное напряжение и ток питания. Проверьте правильность подключения кабелей. Проверьте нагрузку.
2	Ошибка при поверке.	Проверьте правильность установки параметров поверя- емого и эталонного счетчика. Проверьте правильность работы фотосчитывающих головок. Проверьте заземление оборудования и ПК.
3	HS 6000 работает не правильно.	Если HS 6000 работает не правильно при поверке счет- чика, нажмите кнопку « <i>RST</i> » для перезагрузки.
4	Отсутствует связь между Установ- кой и ПК по последовательному интерфейсу.	Проверить настройки канала передачи данных в ПО на ПК. Проверить кабель.

5.4 Перечень возможных неисправностей и способы их устранения.

6 Маркировка и пломбирование

6.1 Маркировка Установок.

На лицевой панели Установок нанесены:

- наименование Установки;
- наименование предприятия-изготовителя;

На паспортной табличке Установок нанесены:

- наименование модели Установки;
- класс точности Установки;
- товарный знак предприятия-изготовителя;
- заводской номер Установки;
- дата изготовления;
- вид питания, номинальное напряжение питания;
- знак государственного реестра по ПР50.2.009.

6.2 На боковую и торцевую стенки ящиков транспортной тары нанесены манипуляционные знаки по ГОСТ 14192-96 "Хрупкое Осторожно", "Беречь от влаги" и "Верх".

6.3 Пломбы устанавливаются на крепежных винтах передней и задней панелей эталонного счетчика и на крепежных винтах развязывающих трансформаторов тока.

Пломбирование Установок после вскрытия и ремонта могут проводить только специально уполномоченные организации и лица.

Приложение А Схемы подключения Установки к ПК

При управлении Установкой от ПК необходимо соединить нуль-модемным кабелем paзъем RS-232 Установки с последовательным СОМ-портом ПК. В случае отсутствия в ПК СОМ-порта необходимо установить плату расширения СОМ-портов в материнскую плату, либо подключить внешний преобразователь интерфейсов (например, USB-RS232).

Рисунок А1 Схема подключения Установки к ПК по интерфейсу RS-232

Рисунок А2 Схема подключения Установки к ПК через преобразователь интерфейсов USB-RS232

Рисунок АЗ Схема подключения Установки к ПК через плату расширения СОМ-портов

Установка (DB-9)		ПК (DB-9)	
Цепь	Контакт	Контакт	Цепь
Экран	1	1	Экран
тх	2	2	RX
RX	3	3	тх
GND	5	5	GND

Рисунок АЗ Схема кабеля для соединения Установки с ПК по интерфейсу RS-232

Рисунок А4 Схема подключения Установки к ПК с одновременным подключением счетчиков по последовательному интерфейсу RS-485

Приложение Б Программное обеспечение

В комплект поставки Установки входит диск с программным обеспечением:

- программа «Тест-СОФТ»

Программа «Тест-СОФТ» предназначена для работы в составе Установок НЕВА-Тест для поверки счётчиков электрической энергии.

Программа «Тест-СОФТ» позволяет:

- считывать результаты измерений из Приборов через последовательный порт и отображать их на экране ПК;

- выполнять установку нужных пределов Приборов по команде пользователя;

- задавать требуемые сигналы на Генераторе с автоматической и ручной подстройкой;

- проводить поверку измерительных приборов (цифрового и стрелочного типов) в ручном режиме;

- формировать протоколы поверки измерительных приборов;

- сохранять в файл на жестком диске ПК испытательные сигналы и методики поверки измерительных приборов;

Порядок работы с программой «Тест-СОФТ» подробно описан в "ПРОГРАММА «Тест-СОФТ». Руководство пользователя".
Приложение В

Методика поверки двухэлементного однофазного счетчика на трехфазных автоматических Установках НЕВА-Тест 6303

Установки трехфазные НЕВА-Тест 6303 позволяют производить поверку однофазных счетчиков с одним измерительным элементом (см. руководство пользователя «Тест-СОФТ») в автоматическом режиме. Поверку однофазных счетчиков с двумя измерительными элементами (проверка тока в нейтрале счетчика) установки НЕВА-Тест 6303 в автоматическом режиме не могут. Данная методика позволяет проводить поверку таких счетчиков в полуавтоматическом режиме.

Порядок проведения поверки рассмотрим на примере поверки счетчика HEBA 106 1STO 230V 5(60)A 50Hz.

Создание методики поверки.

В программе «Тест-СОФТ» открываем раздел «Методика поверки», в которой заполняем разделы А и В согласно методики поверки на счетчик (раздел А нагрузочные точки по основной цепи, раздел В точки по цепи нейтрали).

Последовательность проведения испытаний должна быть в разделе «ПАРАМЕТРЫ ИСПЫТАНИЯ»: сначала точки нагрузки из раздела А, потом В.

В разделе «ПАРАМЕТРЫ СЧЕТЧИКА» устанавливаем 3Р4W А.Р. (трехфазный четырёхпроводной режим), все остальные установки согласно данным на щитке счетчиков:

🖏 методи	КА ПОВЕР	ки													x
Имя метод	ики НЕ	BA 106			•	Пря	мая(+)		•	📬 Доба	B. 🗎	Coxp.	x	Удали	ть
								-	ПАРАМЕТРЫ ИСПЫТАНИЯ						
Harmun	limax	lb	0.115	0.0515	0.0115	0.00316			Нагрузка	Emin	Emax	Имп.	Врем	Корек	
1.0	a jiiiax	IU II	0.110	0.0510	0.0110	0.00310	-	-11	A:1.0 Imax	-1	1	40			
0.5	-						-	-1	A:0.5L Imax	-1	1	20			
0.50	-								A:0.5C Imax	-1	1	20			
A 10									A:1.0 lb	-1	1	10			
0.5		-		-					A:0.5L lb	-1	1	5			
0.50		ă	-		-				A:0.5C lb	-1	1	5			
B 10	-	ŏ							A:1.0 0.1lb	-1	1	1			
0.5		-	- T						A:0.5L 0.1lb	-1	1	1			
0.50	-								A:1.0 0.05lb	-1.5	1.5	1			
C 10	10								A:1.0 0.01lb	-1.5	1.5	1			
0.5	0.5							A:0.5L 0.01lb	-1.5	1.5	1				
0.50									B:0.5L Imax	-1	1	40			
10.00								-1	B:1.0 lb	-1	1	10			-
 ▲ ▲ ▲ ▲ № Редакт: двойной щелч. в сетке 13/14 															
Г ПРОГРЕВ: Я ⁵ min ▼ Г Пуск по 1-му имп. Г Чувствительность Г Станд.отклон.(S) Г Тест влияния															
□ Самоход 1 🔽 %Un Ib Ig= 0.004 Ib 1.0 0.5L 🚟 Влияние															
Самохо	д2 115	i 🔻	%Un	lb		Bpe	мя Теста	a 00	0:10:00 🗆 I	Проверка (Ссч.		<u></u>	тмени	ть
Время Тес	Ta 00:	10:00	Число и	мп.	1	Чис	ло имп.			Точн.хода ч	асов		_	Выход	
	Запрет изм. (ПАРАМЕТРЫ СЧЕТЧИКА привязаны к имени МП).														
	ГРЫ СЧЕТ	ЧИКА-													
1	ип счетчи	ка:	ТИП СЕТ	ГИ:	мода	ЕЛЬ		Co	ч.	Описание счетчика:					
	Mechanica	al 🔻	3P4W A.	P. 💌	HEB/	106	•	32	200 -					-	
U	Ј ном.:		I ном.:		Часто	та:		Кл	(ласс(АКТ): Кл.(РЕАКТ):						
	230V	•	5(60)	•	50Hz		-	1.	0 🗸	2.0		•			
· · · · · · · · · · · · · · · · · · ·															

Подключение счетчиков к установке.

Счетчики подключаются к токовым клеммам фаз А и В установки, напряжение на счетчики подается с фазы А на первую токовую клемму, ноль на третью с лева клемму.

Токовые клеммы фазы С необходимо закоротить для предотвращения аварии при проверке стартового тока счетчиков, т.к. установлен четырёхпроводный режим то ток будет протекать и по фазе С.

Так как ток при этом небольшой, то требования к перемычкам отсутствуют – закоротить любым способом.

Подключаются телеметрические кабели или настраиваются фотоголовки к счетчикам для снятия показаний погрешности:

Запуск программы поверки.

Включается автоматический режим проверки. По окончании проверки по фазе A необходимо остановить программу поверки. Если не остановить программу поверки, то погрешность по фазе B будет в пределах -50%:

THIT CETH:3P4WAF UH0M=220V Hom=5(100) Knac:1.0 FH0M=50Hz Too. X No.1 No.2 Cep.Ns 10600 5320 0 -1-1;40 - - Casxox: 115%Un F(00.00.06) F(00.00.07) Vascrear: 0.4%Ib F(00.00.07) P(00.00.07) Castox: 115%Un P(00.00.07) P(00.00.07) A.0.5L Imax 0.528 0.483 X.1.0 Ib 0.706 0.670 X.0.5L Ib 0.823 0.502 X.0.5C Ib 0.469 0.463 X.1.0 Ib 0.562 0.633 X.0.5C Ib 0.562 0.633 X.0.5C Ib 0.562 0.633	Dara 2018-02-01 2 No. 3 110 3 108) F(00.00.07) 100) P(00.00.00) 14 0.241 13 0.471 13 0.415 6 0.212 5 0.252
Tips X No. 1 No. 2 Cep.Ne 10600 5320 ° -1-1;40 7 7 Casox. 115%Un F(00:00:06) F(00:00:07) Yyscreart. 0.4%lb P(00:00:07) P(00:00:07) A 1.0 Imax 0.396 0.700 A 0.5C Imax 0.528 0.482 A 1.0 Ib 0.706 0.667 A 0.5C Ib 0.469 0.456 A 1.0 Ib 0.562 0.633	2 No. 3 100 3 108) F(00.00.07) 100) P(00.00.00) 14 0.241 13 0.471 13 0.415 16 0.212 15 0.212
Cep.Ne 10600 5320 0° -1-1;40 F F F 7 CaMOX.115%UIn F(00:00:06) F(00:00:07) 7 Vyscreatr.0.4%Ib P(00:00:07) P(00:00:07) 7 A1.0 Imax 0.396 0.700 7 A.0.5L Imax 0.573 0.588 7 A.0.5L Ib 0.706 0.677 7 A.0.5L Ib 0.469 0.456 7 A.0.5L Ib 0.469 0.456 7 A.0.5L Ib 0.562 0.633	State State <th< td=""></th<>
F(00:00:06) F(00:00:06) Yyscrewr. 0.4%lb F(00:00:07) P(00:00:07) Y 10 Imax 0.396 0.70 X:0.5C Imax 0.573 0.58 X:0.5C Imax 0.528 0.483 X:0.5C Ib 0.706 0.677 X:0.5C Ib 0.469 0.452 X:0.5C Ib 0.469 0.452 X:0.5C Ib 0.562 0.633	F(00 00.07) 100) P(00.00.00) M4 0.241 I3 0.471 I3 0.415 I6 0.212 I5 0.415
Cassox: 115%Un F(00:00:06) F(00:00:07) 7 Upecnant: 0.4%Ib P(00:00:07) P(00:00:07) 7 A:0.5L Imax 0.573 0.582 7 A:0.5L Imax 0.528 0.483 7 A:0.5L Ib 0.706 0.677 7 A:0.5L Ib 0.706 0.677 7 A:0.5L Ib 0.469 0.458 7 A:0.5L Ib 0.562 0.633	F(00.00:07) P(00:00:00) P(00:00:00) M 0.241 I3 0.471 I3 0.415 6 0.212 5
Hyscrewr. 0.4%Ib P(00:00:07) P(00:00:07) A 10 Imax 0.396 0.700 A 0.5 L Imax 0.573 0.582 A 1.0 Ib 0.706 0.670 A 0.5L Ib 0.706 0.670 A 0.5C Ib 0.823 0.500 A 0.5C Ib 0.469 0.463 A 0.5L Ib 0.562 0.630	P(00:00:00) M4 0.241 I3 0.471 I3 0.415 I6 0.212 I5 0.604
A 1.0 Imax 0.396 0.70- A 0.5L Imax 0.573 0.58: A 0.5C Imax 0.528 0.48: A 1.0 Ib 0.706 0.670 A 0.5L Ib 0.823 0.50: A 0.5C Ib 0.469 0.455 A 1.0 Ib 0.562 0.630	0.241 13 0.471 13 0.415 16 0.212 16 0.212
A 0.5L Imax 0.573 0.583 A 0.5C Imax 0.528 0.483 A 10 Ib 0.706 0.671 A 0.5C Ib 0.823 0.503 A 0.5C Ib 0.469 0.453 A 1.0 Ib 0.562 0.633	13 0 471 13 0 415 16 0 212
A 0.5C Imax 0.528 0.483 A 1.0 lb 0.706 0.674 A 0.5L lb 0.823 0.502 A 0.5C lb 0.469 0.453 A 1.0 lb 0.562 0.633 A 0.5L 0.1lb 0.562 0.303	3 0.415 6 0.212
A 1.0 lb 0.706 0.670 A 0.5 L lb 0.823 0.500 A 0.5 C lb 0.469 0.450 A 1.0 lb 0.562 0.630 A 0.5 L 0.1lb 0.562 0.300	6 0.212
A 0.5L lb 0.823 0.50 7 A 0.5C lb 0.469 0.450 7 A 1.0 0.1lb 0.562 0.630 7 A 0.5L 0.1lb 0.562 0.300	0.624
# A0.5C lb 0.469 0.450 # A1.0.0 lb 0.562 0.630 # A0.5L 0.1lb 0.562 0.300	0.524
FA1.0.0.1lb 0.562 0.630 FA0.5L.0.1lb 0.562 0.300	0.427
7 A0.5L 0.1lb 0.562 0.30	0.728
	0.345
7 A1.0 0.05lb 0.527 0.28	0.662
A1.0 0.01b 0.781 0.33	0.701
7 A0.5L 0.01lb 0.344 0.43	0.936
8.0.5L Imax	
B:10 lb	
B:1.0 0.1lb	

Далее, после остановки, необходимо на всех посадочных местах переставить штыри подачи напряжения с фазы A на фазу B (зеленый разъем):

Встречаются счетчики, у которых информация о том по какой цепи протекает ток разделена (два светодиода, один при нормальном подключении, второй для регистрации тока в нейтрале). Для таких счетчиков необходимо установить фотоголовки на нужный светодиод.

Далее запускаем программу дальше до окончания поверки:

Наст. МП Парм.	Tecr	Рез. Корр. Удал. Сохр. Мон.	О Выход			
TUIT CETU: 3P4WAF U	IOM=22	OV INOM=5(100) Knacc:1.0) Fном=50Hz Дата:2018-	02-01		
Поз.	X	No. 1	No. 2	No. 3		
Cep.NR	-	10600	5320 010	3		
-1-1;1						
Camox 115%Un		F(00:00:06)	F(00:00:08)	F(00:00:07)		
У Чувствит. 0.4%1b		P(00:00:07)	P(00:00:00)	P(00:00:00)		
7 A:1.0 Imax		0.396	0.704	0.241		
7 A.O.5L Imax		0.573	0.583	0.471		
7 A.0.5C Imax		0.528	0.483	0.415		
7 A.1.0 lb		0.706	0.676	0.212		
7 A.0.5L Ib		0.823	0.505	0.524		
A 0.5C Ib		0.469	0.458	0.427		
7 A.1.0 0.11b		0.562	0.630	0.728		
7 A.O.5L 0.11b		0.562	0.305	0.345		
7 A.1.0 0.05lb		0.527	0.289	0.662		
7 A:1.0 0.01lb		0.781	0.336	0.701		
7 A:0.5L 0.01lb		0.344	0.434	0.936		
7 B:0.5L Imax		0.586	0.590	0.176		
7 B:1.0 lb		0.523	0.421	0.197		
8:1.0 0.1lb		0.738	0.734	0.784		
	-					
Метка Резуль	таты те					
		пт ва дополнит.	Dri C			
		ABT	о Ручной Стол	Сохр. Выход		

Печать протокола поверки.

Сохраняем результаты в памяти компьютера, создаем протокол поверки и выводим полученные результаты (операции проводятся согласно руководства пользователя «Тест-СОФТ»):

ПРОТОКОЛ ПС Класс т	ОВЕРКИ СЧЁТЧИІ очности 1	HEBA 106 3200	Unom	230V	Inom	5(60)	Дата 01.02.2018		
Изготовитель:	ООО "ТАЙПИТ-И	П"			Темпе	ратура	25		12:15:53
Установка:	НЕВА-Тест 6303И				Влаж	ность	85		

		Основная относительная погрешность в фазном проводе											тн. погрешно проводе	сть в нулевом			
No	Зав. No			Cos = 1.0			Cos =	= 0.5L		$\cos = 0.50$	2	Cos	= 1.0	$\cos = 0.5L$	Самоход	Чувств.	Заключение
		Imax	1.0Ib	0.1Ib	0.05Ib	0.01Ib	Imax	1.0Ib	0.1Ib	Imax	1.0Ib	1.0Ib	0.1Ib	Imax			
1	10600	0.396	0.706	0.562	0.527	0.781	0.573	0.823	0.562	0.528	0.573	0.523	0.738	0.586	БРАК	ГОДЕН	БРАК
2	5320 010	0.704	0.676	0.630	0.289	0.336	0.583	0.505	0.305	0.483	0.583	0.421	0.734	0.590	БРАК	ГОДЕН	БРАК
3	654321	0.241	0.212	0.728	0.662	0.701	0.471	0.524	0.345	0.415	0.471	0.197	0.784	0.176	БРАК	ГОДЕН	БРАК
4																	
5																	
6																	
7																	
8																	
9																	
10																	
11																	
12																	
13																	
14																	
15																	
16																	

Оператор

Хугаев О, В.

Контролёр

Путин В. В

Родионов П.В.

Поверитель

Приложение Г Подключение развязывающих трансформаторов тока к установкам

Вариант установок без развязывающих трансформаторов тока можно оснастить трансформаторами тока трехфазными развязывающими НЕВА-Тест 6323 (Технические условия TACB.411722.011 ТУ). Органы управления и индикации, схема подключения трансформаторов приведена в руководстве по эксплуатации TACB.411722.011 РЭ.

- 1 Разъем RJ451 порта управления (IO port)
- 2 Разъемы RJ11 интерфейса RS-485
- 3 Индикаторы состояния цепей L1, L2, L3 (зеленый норма, красный авария)
- 4 Кнопка отключения вторичных цепей (цепей подключения счетчика)
- 5 Индикатор питания
- 6 Кнопка сброса (включение вторичных цепей)
- 7 Щиток
- 8 Разъемы для подключения питание от сети переменного тока 220V
- 9 Предохранитель

Рисунок С4 Трансформатор тока трехфазный развязывающий НЕВА-Тест 6323

Необходимое количество трансформаторов тока НЕВА-Тест 6323 зависит от количества посадочных мест установки (6,16, 32 поверяемых счетчиков - 6,16, 32 развязывающих трансформаторов тока НЕВА-Тест 6323).

Трансформаторы тока НЕВА-Тест 6323 располагаются на свободных местах установки. Наиболее подходящие место установки трансформаторов тока на столешнице сзади посадочных мест поверяемых счетчиков.

Подключение трансформаторов HEBA-Тест 6323 к поверочной установке проводится в следующей последовательности:

1. Отключить отходящие провода тока от клемм на стойке каждой фазы:

3. Подключить каждый развязывающий трансформатор тока к сети переменного тока 220V. Желательно подключить трансформаторы к розетке 220V на боковой стороне установки, так как при отсутствии питания в момент протекания тока через развязывающие трансформаторы тока возможен выход их из строя.

ПРИМЕЧАНИЕ

При проведении периодической поверки установки HEBA-Тест 6303 с развязывающими трансформаторами тока HEBA-Тест6323 токовые входы образцового счетчика (Энергомонитор 3.1) необходимо подключать в разрыв подключения цепей тока образцового счетчика установки.