

НА БАЗЕ ПРИБОРОВ УЧЁТА ЭЛЕКТРОЭНЕРГИИ «НЕВА»

04

0 компании

U8АСКУЭ на базе канала связи GSM/GPRS

10

АСКУЭ на базе канала связи PLC (G3/PRIME) 12

АСКУЭ на базе канала связи RF 14

АСКУЭ на базе канала связи EIA-485

АСКУЭ на базе канала связи NB-IoT **18**Приборы учёта

34

Дополнительное оборудование

36

Компоненты системы «HEBA 1»

38

Программное обеспечение «HEBA PRO»

4 О КОМПАНИИ

Торгово-промышленная группа «Тайпит» успешно ведёт свою деятельность на российском рынке около 30 лет. С самого начала современные перспективные технологии являлись основной целью развития компании. Спустя некоторое время производство приборов учёта электроэнергии и метрологического оборудования было выделено в отдельное направление бизнеса. 000 «Тайпит — Измерительные Приборы» является одним из признанных отечественных лидеров в своём сегменте. Уникальные разработки опытно-конструкторского бюро, собственная производственная база, отлаженная логистическая деятельность позволяют ориентироваться и учитывать запросы клиентов.

Компания успешно реализует поставленные задачи по разработке и внедрению систем АСКУЭ, принимая во внимание изменения, вызванные цифровизацией энергетического комплекса и введением нового законодательства.

Преимущества АСКУЭ «НЕВА»

Полный комплекс услуг по реализации проекта

Разработка индивидуальных систем любой сложности

Высокая надёжность передачи данных

Контроль баланса полученной электроэнергии и аварийных ситуаций

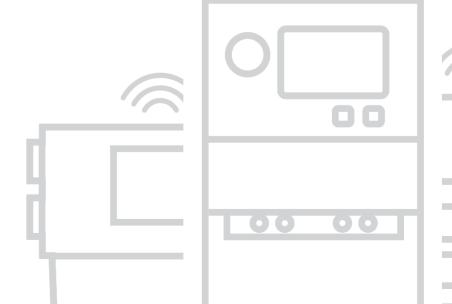
Оперативный доступ к показаниям приборов учёта

Удалённое ограничение в подаче энергоресурсов

>300 человек штат компании

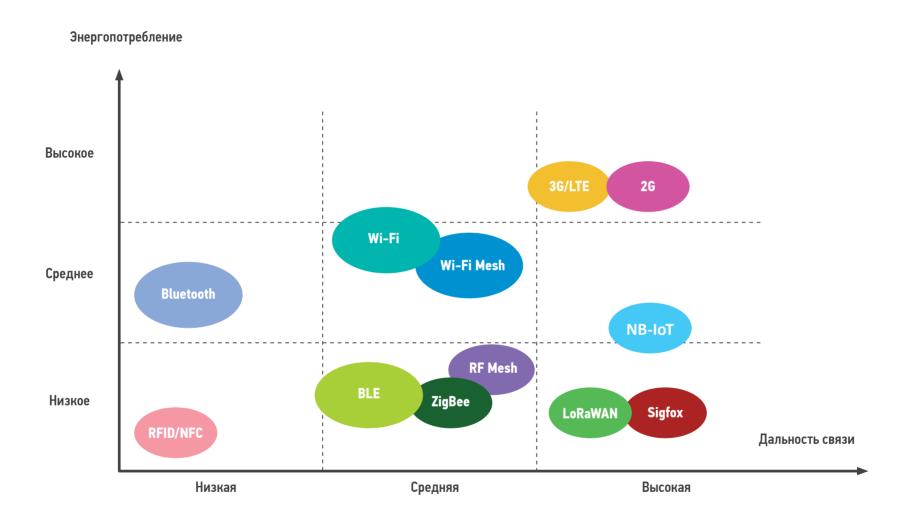
7 складов на территории России

3000 реализованных проектов АСКУЭ


>2000 м² производственные площади

>1 млн приборов в год

>4000 м² логистический комплекс

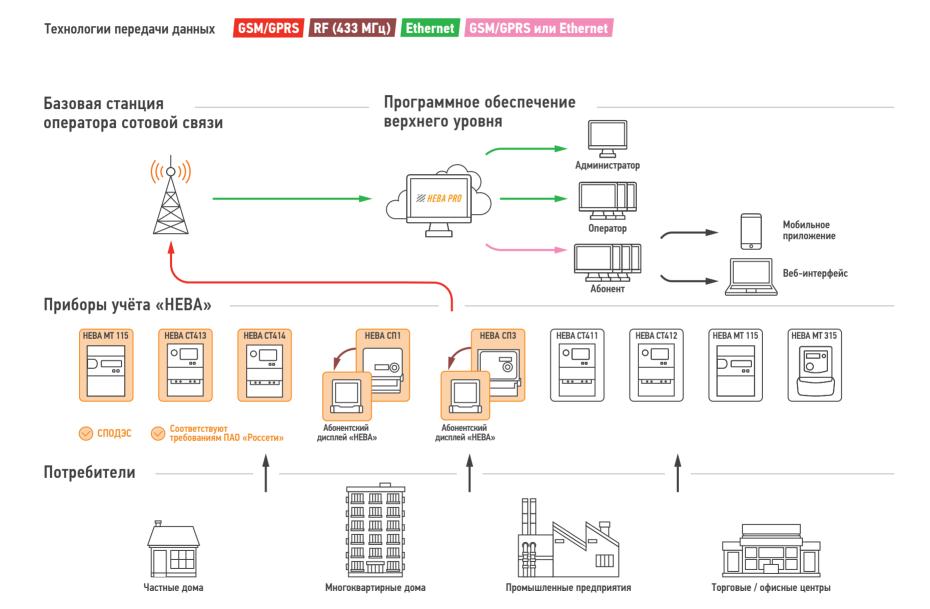


Современные интеллектуальные системы учёта электроэнергии основаны на применении различных технологий передачи данных. Наиболее широкое применение нашли следующие технологии:

ПРОВОДНЫЕ				
Характеристика	RS-485	PLC (G3/PRIME)		
Диапазон рабочих частот		9 — 98 кГц		
Максимальное количество устройств	256	512		
Максимальное расстояние	1200 метров	1000 м (1050 кВ); 200 м (0,220,38 кВ)		
Режим передачи	Дифференциальный сигнал (балансный)	Дуплекс		
Максимальная скорость передачи	9600 бит/с	256 Кбит/с		

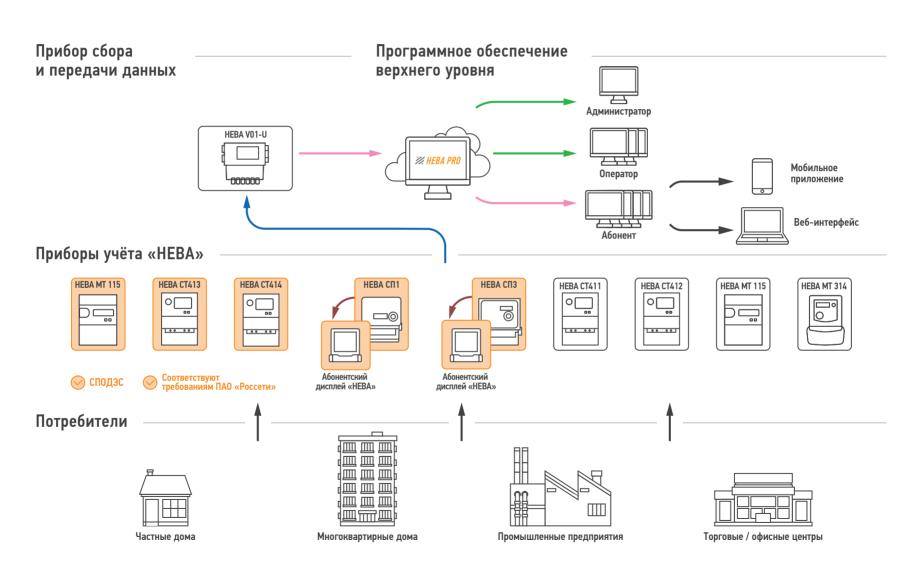
БЕСПРОВОДНЫЕ					
Характеристика	RF	ZigBEE	LoRaWAN	Wi-Fi (Mesh)	GSM/GPRS
Количество точек подключения к одному УСПД	512	512	до 5000	до 10000	Определяется техническими возможностями сервера
Скорость передачи данных	1000 Кбит/с	2 Кбит/с	0,2 Кбит/с	до 2 Мбит/с	до 2 Мбит/с /256 Кбит/с
Рабочий диапазон частот	769-935 МГц	2400,0— 2483,5 МГц	2400,0 МГц/ 868,95МГц	2,4 ГГц/5ГГц	900/1800 МГц
Число частотных каналов	16/32	16	4	16	Определяется технологией GSM
Число ретрансляций	128	16	1	256	-
Дальность связи в пределах прямой видимости	До 100 м	До 100 м	10000— 15000 м	до 200 м (прямая видимость)	Определяется технологией GSM
Наличие базовой станции	Есть	Есть	Есть	Есть	Есть

^{*} Источник: www.tadviser.ru, публикация от 12.07.2019 г.


АСКУЭ НА БАЗЕ КАНАЛА СВЯЗИ GSM/GPRS

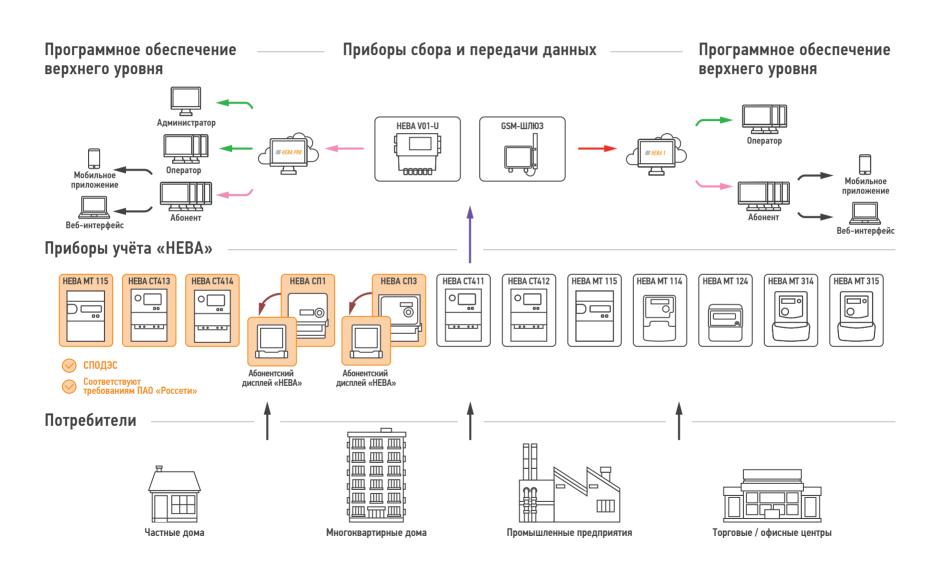
Технология GSM/GPRS предполагает доступ к АСКУЭ через сети операторов сотовой связи

GSM/GPRS


АСКУЭ НА БАЗЕ КАНАЛА СВЯЗИ PLC (G3/ PRIME)

Технология PLC обеспечивает передачу данных по силовым линиям электропитания

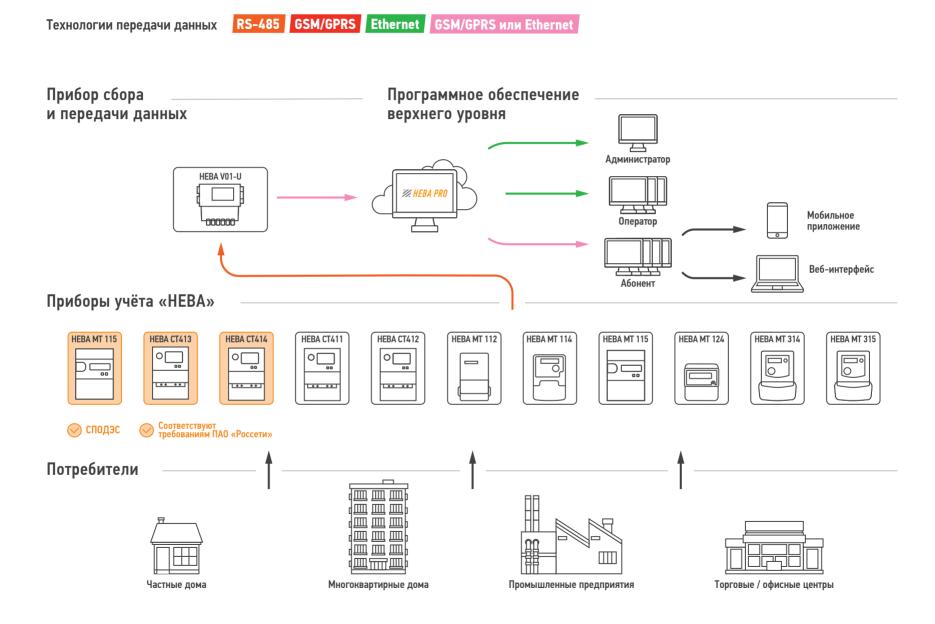
Технологии передачи данных PLC (G3/ PRIME) RF (433 МГц) Ethernet GSM/GPRS или Ethernet



АСКУЭ НА БАЗЕ КАНАЛА СВЯЗИ RF

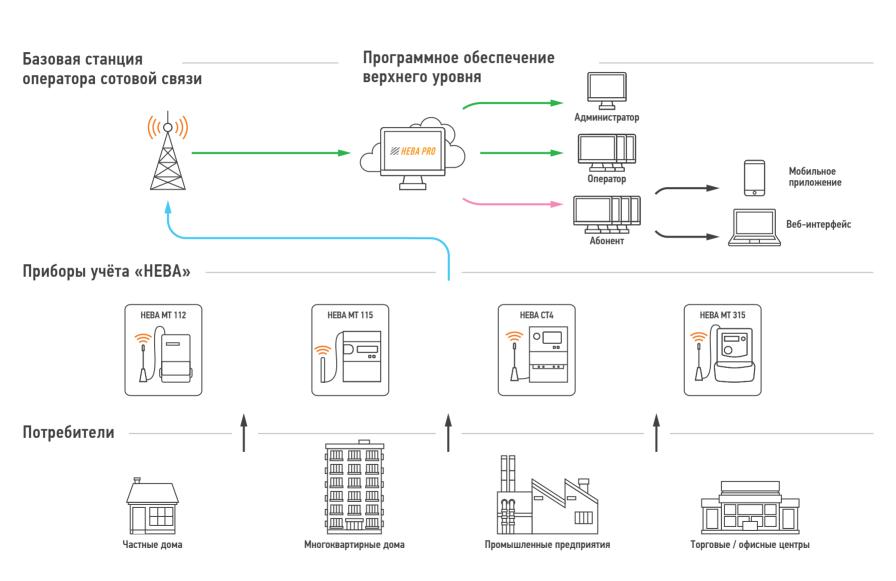
Технология RF обеспечивает обмен информацией между устройствами сбора и передачи данных приборами учёта

Технологии передачи данных RF (2,4 ГГц, 868 МГц) GSM/GPRS RF (433 МГц) Ethernet GSM/GPRS или Ethernet


АСКУЭ НА БАЗЕ КАНАЛА СВЯЗИ RS-485

Технология RS-485 обеспечивает передачу данных через локальные сети и сеть Интернет

RS-485



АСКУЭ НА БАЗЕ КАНАЛА СВЯЗИ NB-IoT

Технология NB-IoT обеспечивает передачу данных через сети операторов сотовой связи

Технологии передачи данных NB-IoT Ethernet GSM/GPRS или Ethernet

ПРИБОРЫ УЧЁТА «НЕВА»

Межповерочный интервал

280 000 YACOB

Средняя наработка

30 ЛЕТ

Средний срок службы

7 JET

Гарантийный срок

Прибор учёта электроэнергии

НЕВА МТ 115 (СПОДЭС)

Однофазный многофункциональный

Поддерживает протокол обмена данными:

СПОДЭС/DLMS

Исполнения с интерфейсами:

RS-485

Функциональные особенности

- Полное соответствие требованиям, предъявляемым к протоколам обмена с компонентами интеллектуальных систем учёта
- Протокол обмена данными СПОДЭС/DLMS
- Измерение параметров качества электроэнергии установившихся отклонений частоты и напряжения сети
- Изменённая система задания тарифных расписаний. позволяющая устанавливать 36 графиков тарификации с указанием времени начала 48 тарифных зон суток и тарифа раздельно для каждого дня недели
- Возможность установки сменных коммуникационных модулей
- Возможность замены батареи без снятия пломб со знаком поверки
- Гибкая система формирования профилей измеряемых величин

Оснащение

- Оптический порт по ГОСТ IEC 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока питания
- Сменный коммуникационный модуль
- Датчик магнитного поля
- Два датчика тока (два шунта), опционально
- Вход резервного питания, 9-27 В
- Подсветка ЖКИ
- Электронные пломбы крышки клеммной колодки и корпуса

- Оптический и электрический испытательные выходы активной энергии и точности хода часов с возможностью переключения в режим проверки точности измерения реактивной энергии
- Звукоизлучатель для звукового информирования о начале превышения порогов напряжения, лимита мощности, лимита энергии, воздействия магнитным полем, неравенства токов
- Встроенный расцепитель для отключения нагрузки при превышении заданного лимита мощности, порогов напряжений, лимита энергии, при обнаружении сильного магнитного поля, неравенства токов в цепях фазного и нулевого проводов

Технические характеристики

Класс точности акт./реакт.	1/1; 1/2
Номинальное напряжение, В	230
Рабочий диапазон фазных напряжений, В	от 161 до 264
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Номинальный (макс.) ток, А	5 (60); 5 (80)
Разрядность показаний	5+2
Измерение установившихся отклонений напряжения и частоты по ГОСТ 30804.4.30-2013	класс S
Габаритные размеры, мм	180x135x65

Межповерочный интервал

280 000 YACOB

Средняя наработка

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии **HEBA CT411**

Трёхфазный многофункциональный

Исполнения с интерфейсами:

NB-IoT

GSM RF (2,4 ГГц, 868 МГц)

RS-485 PLC PRIME

Функциональные особенности

- Измерение параметров качества электроэнергии установившихся отклонений частоты сети и напряжения
- Изменённая система задания тарифных расписаний, позволяющая устанавливать 36 графиков тарификации с указанием времени начала 48 тарифных зон суток и тарифа раздельно для каждого дня недели
- Возможность установки сменных коммуникационных модулей
- Возможность замены батареи без снятия пломб со знаком поверки
- Гибкая система формирования профилей измеряемых величин

Технические характеристики

Класс точности акт./реакт.	0,2S/0,5; 0,5S/1
Номинальное напряжение, В	3×57,7/100; 3×57,7/100 и 3×230/400;3×230/400
Рабочий диапазон фазных напряжений, В	от 3×46/80 до 3×57,7/100; от 3×46/80 до 3×264/460
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	50 ± 2,5
Номинальный (макс.) ток, А	1 (2); 1 (7,5); 5 (10)
Разрядность показаний	5+3
Измерение установившихся отклонений напряжения и частоты по ГОСТ 30804.4.30-2013	класс S
Габаритные размеры, мм	257×170×76

- Оптический порт по ГОСТ МЭК 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока питания
- Датчик магнитного поля
- Вход для подключения резервного источника питания, от 10 до 27 В
- Подсветка ЖКИ
- Электронные пломбы крышки клеммной колодки и корпуса
- Оптический и электрический испытательные выходы активной энергии и точности хода часов с возможностью переключения в режим проверки точности измерения реактивной энергии
- Аппаратная защита разрешения записи
- Звукоизлучатель для звукового информирования о начале превышения порогов напряжения, лимита мощности, лимита энергии, воздействия магнитным полем, неверного подключения
- Дискретные входы/выходы
- Дискретные выходы могут быть настроены в режиме реле и срабатывать при превышении настроенных лимитов и порогов, а также менять своё логическое состояние по различным условиям
- Дискретные входы могут быть настроены в качестве счетчиков импульсов для других приборов учёта, а также для фиксации сигналов с различных датчиков
- Выход +24 В

Межповерочный интервал

280 000 YACOB

Средняя наработка

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии **HEBA CT412**

Трёхфазный многофункциональный

Исполнения с интерфейсами:

NB-IoT

GSM RF (2,4 ГГц, 868 МГц)

RS-485 PLC PRIME

Функциональные особенности

- Измерение параметров качества электроэнергии установившихся отклонений частоты сети и напряжения
- Изменённая система задания тарифных расписаний, позволяющая устанавливать 36 графиков тарификации с указанием времени начала 48 тарифных зон суток и тарифа раздельно для каждого дня недели
- Возможность установки сменных коммуникационных модулей
- Возможность замены батареи без снятия пломб со знаком поверки
- Гибкая система формирования профилей измеряемых величин

Технические характеристики

Класс точности акт./реакт.	1/2
Номинальное напряжение, В	3×120/208 и 3×230/400; 3×230/400
Рабочий диапазон фазных напряжений, В	от 3×90/156 до 3×264/460; от 3×172/300 до 3×264/460
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	50 ± 2,5
Номинальный (макс.) ток, А	5 (60); 5 (80); 5 (100)
Разрядность показаний	6+2
Измерение установившихся отклонений напряжения и частоты по ГОСТ 30804.4.30-2013	класс S
Габаритные размеры, мм	257×170×76

Оснащение

- Оптический порт по ГОСТ МЭК 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока питания
- Датчик магнитного поля
- Вход для подключения резервного источника питания, от 10 до 27 В
- Подсветка ЖКИ
- Электронные пломбы крышки клеммной колодки и корпуса
- Оптический и электрический испытательные выходы активной энергии и точности хода часов с возможностью переключения в режим проверки точности измерения реактивной энергии
- Аппаратная защита разрешения записи
- Звукоизлучатель для звукового информирования о начале превышения порогов напряжения, лимита мощности, лимита энергии, воздействия магнитным полем, неверного подключения
- Встроенные расцепители для отключения нагрузки при превышении заданного лимита мощности, порогов напряжений, лимита энергии, при обнаружении воздействия сильным магнитным полем
- Дискретные входы/выходы
- Дискретные выходы могут быть настроены в режиме реле и срабатывать при превышении настроенных лимитов и порогов, а также менять своё логическое состояние по различным условиям
- Дискретные входы могут быть настроены в качестве счетчиков импульсов для других приборов учёта, а также для фиксации сигналов с различных датчиков
- Выхол +24 В

Межповерочный интервал

280 000 YACOB

Средняя наработка

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии

HEBA CT413

Трёхфазный многофункциональный

Поддерживает протокол обмена данными:

СПОДЭС/DLMS

Исполнения с интерфейсами:

GSM RF (2,4 ГГц, 868 МГц)

RS-485

PLC PRIME

Функциональные особенности

- Протокол обмена данными СПОДЭС/DLMS
- Измерение параметров качества электроэнергии установившихся отклонений частоты сети и напряжения
- Возможность установки сменных коммуникационных модулей
- Возможность замены батареи без снятия пломб со знаком поверки
- Гибкая система формирования профилей измеряемых величин
- Гибкая система формирования суточных и месячных профилей

Технические характеристики

Класс точности акт./реакт.	0,2S/0,5; 0,5S/1
Номинальное напряжение, В	3×57,7/100;3×57,7/100 и 3×230/400;3×230/400
Рабочий диапазон фазных напряжений, В	от 3×46/80 до 3×57,7/100; от 3×46/80 до 3×264/460
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Номинальный (макс.) ток, А	1 (2); 1 (7,5); 5 (10)
Разрядность показаний	5+3
Измерение установившихся отклонений напряжения и частоты по ГОСТ 30804.4.30-2013	класс S
Габаритные размеры, мм	257×170×76

- Оптический порт по ГОСТ МЭК 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока питания
- Возможность установки второго интерфейса RS-485
- Датчик магнитного поля
- Вход для подключения резервного источника питания, от 10 до 27 В
- Подсветка ЖКИ
- Электронные пломбы крышки клеммной колодки и корпуса
- Оптический и электрический испытательные выходы активной энергии и точности хода часов с возможностью переключения в режим проверки точности измерения реактивной энергии
- Аппаратная защита разрешения записи
- Звукоизлучатель для звукового информирования о начале превышения порогов напряжения, лимита мощности, лимита энергии, воздействия магнитным полем, неверного подключения
- Дискретные входы/выходы
- Дискретные выходы могут быть настроены в режиме реле и срабатывать при превышении настроенных лимитов и порогов, а также менять своё логическое состояние по различным условиям
- Дискретные входы могут быть настроены в качестве счетчиков импульсов для других приборов учёта, а также для фиксации сигналов с различных датчиков
- Выход +24 В

Межповерочный интервал

280 000 YACOB

Средняя наработка

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии **HEBA CT414**

Трёхфазный многофункциональный

Поддерживает протокол обмена данными:

СПОДЭС/DLMS

Исполнения с интерфейсами:

GSM RF (2,4 ГГц, 868 МГц)

RS-485

PLC PRIME

Функциональные особенности

- Протокол обмена данными СПОДЭС/DLMS
- Измерение параметров качества электроэнергии установившихся отклонений частоты сети и напряжения
- Возможность установки сменных коммуникационных модулей
- Возможность замены батареи без снятия пломб со знаком поверки
- Гибкая система формирования профилей измеряемых величин
- Гибкая система формирования суточных и месячных профилей

Технические характеристики

Класс точности акт./реакт.	1/2
Номинальное напряжение, В	3×120/208 и 3×230/400; 3×230/400
Рабочий диапазон фазных напряжений, В	от 3×90/156 до 3×264/460; от 3×172/300 до 3×264/460
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	50 ± 2,5
Номинальный (макс.) ток, А	5 (60); 5 (80); 5 (100)
Разрядность показаний	6+2
Измерение установившихся отклонений напряжения и частоты по ГОСТ 30804.4.30-2013	класс S
Габаритные размеры, мм	257×170×76

Оснащение

- Оптический порт по ГОСТ МЭК 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока питания
- Возможность установки второго интерфейса RS-485
- Датчик магнитного поля
- Вход для подключения резервного источника питания, от 10 до 27 В
- Подсветка ЖКИ
- Электронные пломбы крышки клеммной колодки и корпуса
- Оптический и электрический испытательные выходы активной энергии и точности хода часов с возможностью переключения в режим проверки точности измерения реактивной энергии
- Аппаратная защита разрешения записи
- Звукоизлучатель для звукового информирования о начале превышения порогов напряжения, лимита мощности, лимита энергии, воздействия магнитным полем, неверного подключения
- Встроенные расцепители для отключения нагрузки
- Дискретные входы/выходы
- Дискретные выходы могут быть настроены в режиме реле и срабатывать при превышении настроенных лимитов и порогов, а также менять своё логическое состояние по различным условиям
- Дискретные входы могут быть настроены в качестве счетчиков импульсов для других приборов учёта, а также для фиксации сигналов с различных датчиков
- Выход +24 В

Межповерочный интервал

280 000 YACOB

Средняя наработка на отказ

30 JET

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии НЕВА СП1

Однофазный сплит

Поддерживает протокол обмена данными:

СПОДЭС/DLMS

Исполнения с интерфейсами:

NB-IoT GSM

RF (2,4 ГГц, 868 МГц) PLC PRIME

Функциональные особенности

- Полное соответствие требованиям, предъявляемым к протоколам обмена с компонентами интеллектуальных систем учёта
- Протокол обмена данными СПОДЭС/DLMS
- Измерение параметров качества электроэнергии установившихся отклонений частоты сети и напряжения
- Гибкая система формирования профилей измеряемых величин
- Гибкая система формирования ежесуточного и ежемесячного профилей
- Ограничение нагрузки по причинам превышения установленных значений: тока, напряжения, активной мощности, активной энергии, коэффициентов активной и реактивной мощности, температуры, неравенства токов, воздействия магнитным полем, вскрытия корпуса
- Абонентский дисплей с расширенным набором параметров.

Оснащение

- Оптический порт по ГОСТ IEC 61107-2011
- Датчик магнитного поля
- Два датчика тока (два шунта), опционально
- Подсветка ЖКИ, опционально
- Электронные пломбы крышки клеммной колодки и корпуса
- Абонентский дисплей в зависимости от исполнения

Технические характеристики

Класс точности акт./реакт.	0,5/1; 1/1; 1/2
Номинальное напряжение, В	230
Рабочий диапазон фазных напряжений, В	от 90 до 264
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Номинальный (макс.) ток, А	5(60); 5(80); 5(100); 10(100)
Разрядность показаний	5+2
Измерение установившихся отклонений напряжения и частоты по ГОСТ 30804.4.30- 2013	класс S
Габаритные размеры, мм	180×150×70

Абонентский дисплей

- Предназначен для визуализации информации об энергопотреблении, измеренном счётчиком электрической энергии
- Информация от счётчика электрической энергии принимается по радиочастотному каналу на частоте 433.1 МГц. Мощность передатчика радиоканала – не более 10 мВт
- Питание дисплея осуществляется от двух щелочных батарей типоразмера АА напряжением 1,5 В

Межповерочный **16 JET** интервал

280 000 YACOB

Средняя наработка на отказ

30 ЛЕТ

Средний срок службы

7 JET

Гарантийный срок

Прибор учёта электроэнергии НЕВА СПЗ

Трёхфазный сплит

Поддерживает протокол обмена данными:

СПОДЭС/DLMS

Исполнения с интерфейсами:

NB-IoT GSM

RF (2,4 ГГц, 868 МГц) PLC PRIME

Функциональные особенности

- Полное соответствие требованиям, предъявляемым к протоколам обмена с компонентами интеллектуальных систем учёта
- Протокол обмена данными СПОДЭС/DLMS
- Измерение параметров качества электроэнергии установившихся отклонений частоты сети и напряжения
- Гибкая система формирования профилей измеряемых величин (ежемесячного профиля, ежесуточного профиля)
- Абонентский дисплей с расширенным набором параметров
- Ограничение нагрузки по причинам превышения установленных значений: тока, напряжения, активной мощности, активной энергии, коэффициентов активной и реактивной мощности, температуры, неравенства токов, воздействия магнитным полем, вскрытия корпуса.

Оснащение

- Оптический порт по ГОСТ IEC 61107-2011
- Датчик магнитного поля
- Подсветка ЖКИ, опционально
- Электронные пломбы крышки клеммной колодки
- Абонентский дисплей в зависимости от исполнения

Технические характеристики

Класс точности акт./реакт.	0,5/1; 1/1; 1/2
Номинальное напряжение, В	3×230/400
Рабочий диапазон фазных	от 3×172/300
напряжений, В	до 3×264/460
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Havening III III iğ (Mayıca) Tayı A	1(10); 5(60); 5(80);
Номинальный (макс.) ток, А	5(100); 10(100)
Разрядность показаний	5+2
Измерение установившихся	
отклонений напряжения и частоты	класс S
по ГОСТ 30804.4.30-2013	
Габаритные размеры, мм	190×195×70

Абонентский дисплей

- Предназначен для визуализации информации об энергопотреблении, измеренном счётчиком электрической энергии
- Информация от счётчика электрической энергии принимается по радиочастотному каналу на частоте 433.1 МГц. Мощность передатчика радиоканала – не более 10 мВт
- Питание дисплея осуществляется от двух щелочных батарей типоразмера АА напряжением 1,5 В

16 ЛЕТ

Межповерочный интервал

280 000 YACOB

Средняя наработка

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Функциональные особенности

- Универсальный корпус позволяет устанавливать счётчик как на 3 винта, так и на рейку ТН-35
- Аппаратная защита разрешения записи

Оснащение

- Оптический порт по ГОСТ IEC 61107-2011
- Промежуточное реле управления нагрузкой
- Оптические испытательные выходы активной и реактивной энергии
- Электрический испытательный выход встроенных часов
- Подсветка ЖКИ
- Электронная пломба крышки клеммной колодки
- Датчик тока шунт или трансформатор

Прибор учёта электроэнергии

HEBA MT 314

Трёхфазный многотарифный

Исполнения с интерфейсами:

RS-485 RF (2,4 ГГц, 868 МГц)

Технические характеристики

пороз трансформаторы	LIOTIOCDO ECTROLILIO	
	непосредственно	
0,5S/1	1/2	
3×230/400 или 3×57,7/100	3×230/400	
от 172 до 264	172 2//	
или от 46 до 69	от 172 до 264	
5	0	
50 ± 2,5		
1(2) или 5(10)	5(60); 5(100)	
5+3	6+2	
227×170×63,5		
122×115×65		
	3×230/400 или 3×57,7/100 от 172 до 264 или от 46 до 69 50 1(2) или 5(10) 5+3	

Межповерочный интервал

280 000 YACOB

Средняя наработка на отказ

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии **HEBA MT 315**

Трёхфазный многотарифный

Исполнения с интерфейсами:

GSM RS-485 NB-IoT

RF (2,4 ГГц, 868 МГц)

Функциональные особенности

- Универсальный корпус позволяет устанавливать счётчик как на 3 винта, так и на рейку ТН-35
- Измерение параметров качаества электроэнергии
- Надёжные схемотехнические решения
- Дистанционный съём и подача показаний
- Способен передавать данные на любые расстояния
- Возможность предоставления доступа потребителю и энергосбыту

Оснащение

- Оптический порт по ГОСТ IEC 61107-2011
- Оптический и электрический испытательные выходы активной и реактивной энергии
- Расцепители или реле управления внешними расцепителями, опционально
- Электрический вход для источника резервного питания
- Электрический испытательный выход встроенных часов
- Электронная пломба корпуса и крышки клеммной колодки
- Датчик магнитного поля
- Датчик тока шунт или трансформатор

Технические характеристики

Тип подключения к сети	через трансформаторы	непосредственно	
Класс точности акт./реакт.	0,5S/1	1/2	
Номинальное напряжение, В	3×57,7/100; 3×57,7/100 и 3×230/400; 3×230/400	3×120/208 и 3×230/400; 3×230/400	
Рабочий диапазон фазных	от 47 до 69, от 47 до 69 и от 172 до 264,	от 90 до 138 и от 172 до 264,	
напряжений, В	от 172 до 264	от 172 до 264	
Номинальная частота сети, Гц	50		
Рабочий диапазон частот, Гц	50 ± 2,5		
Номинальный (макс.) ток, А	1 (2); 1 (7,5); 5 (10) 5 (60); 5 (80); 5 (10)		
Разрядность показаний	5+3	6+2	
Габаритные размеры, мм			
- для крепления винтами	227×170×63,5		
- для установки на рейку ТН-35	122×115×65		

16 ЛЕТ

Межповерочный интервал

280 000 YACOB

Средняя наработка на отказ

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии **HEBA MT 323**

Трёхфазный многотарифный

Исполнение с интерфейсом:

RS-485

Функциональные особенности

- Компактный счётчик полукосвенного подключения
- Аппаратная защита разрешения записи
- Устанавливается на рейку ТН-35

Технические характеристики

Класс точности акт./реакт.	0,5S/1
Номинальное напряжение, В	3×230/400
Рабочий диапазон фазных напряжений, В	от 172 до 264
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Номинальный (макс.) ток, А	5 (10)
Разрядность показаний	5+3
Габаритные размеры, мм	115×122×65

Оснащение

- Оптический порт по ГОСТ IEC 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока питания
- Оптический и электрический испытательные выходы активной и реактивной энергии
- Электрический испытательный выход встроенных часов
- Электронная пломба крышки клеммной колодки
- Датчик тока трансформатор

280 000 YACOB

Средняя наработка на отказ

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии **HEBA MT 324**

Трёхфазный многотарифный

Исполнения с интерфейсами:

RS-485 RF (2,4 ГГц)

Функциональные особенности

- Измеряет и хранит в памяти измеренные значения активной и реактивной энергии нарастающим итогом
- Аппаратная защита разрешения записи
- Устанавливается на рейку ТН-35

Технические характеристики

Класс точности акт./реакт.	1/2
Номинальное напряжение, В	3×230/400
Рабочий диапазон фазных напряжений, В	от 172 до 264
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Номинальный (макс.) ток, А	5 (60); 5 (80); 5 (100)
Разрядность показаний	6+2
Габаритные размеры, мм	115×122×65

Оснащение

- Оптический порт по ГОСТ IEC 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока питания (опционально)
- Встроенный расцепитель для отключения нагрузки при превышении заданного лимита, опционально
- Оптический и электрический испытательные выходы активной и реактивной энергии
- Электрический испытательный выход встроенных часов
- Электронная пломба крышки клеммной колодки
- Датчики тока шунты

16 ЛЕТ

Межповерочный интервал

280 000 YACOB

Средняя наработка

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии **HEBA MT 112**

Однофазный многотарифный

Исполнения с интерфейсами:

RS-485 NB-IoT

Функциональные особенности

- Универсальный корпус позволяет устанавливать счётчик как на 3 винта, так и на рейку ТН-35
- Высокая точность хода часов, корректировка хода часов при изменении температуры
- Невыпадающие винты в клеммной колодке
- Простота подключения

Технические характеристики

Класс точности акт.	1
Номинальное напряжение, В	230
Рабочий диапазон фазных напряжений, В	от 161 до 264
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Номинальный (макс.) ток, А	5(60)
Разрядность показаний	5+2
Габаритные размеры, мм	164x113x51

- Оптический порт по ГОСТ IEC 61107-2011
- Интерфейс RS-485 с питанием от внешнего блока питания (в зависимости от исполнения)
- Встроенный GSM-модем, предназначенный для связи с оборудованием оператора мобильной связи в соответствии со спецификацией NB-IoT (в зависимости от исполнения)
- Электронные пломбы корпуса и крышки клеммной колодки
- Реверсивный счётный механизм, обеспечивающий приращение показаний счётного механизма независимо от направления тока
- Электрический и оптический испытательные выходы
- Датчик тока шунт

280 000 YACOB

Средняя наработка

Средний 30 ЛЕТ срок службы

7 JET

Гарантийный срок

Прибор учёта электроэнергии

HEBA MT 114

Однофазный многотарифный

Исполнения с интерфейсами:

RS-485 RF (2,4 ГГц, 868 МГц) Wi-Fi

Функциональные особенности

- Измерение тока в нулевом проводе с использованием датчика тока – шунт (в зависимости от исполнения)
- Измерение реактивной положительной и отрицательной энергии (в зависимости от исполнения)
- Измерение параметров качества электроэнергии установившихся отклонений частоты сети и напряжения (в зависимости от исполнения)
- Оснащён встроенным расцепителем для отключения нагрузки при превышении заданного лимита (мощность, напряжение, энергия, воздействие магнитного поля)
- Используется в качестве первичного датчика АСКУЭ

Технические характеристики

Класс точности акт./реакт.	1/2
Номинальное напряжение, В	230
Рабочий диапазон фазных напряжений, В	от 161 до 264
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Номинальный (макс.) ток, А	5(60), 5(80)
Разрядность показаний	6+2
Габаритные размеры, мм	173,5x118x55,6

- Оптический порт по ГОСТ IEC 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока питания или радиомодемом 2,4 ГГц или 868 МГц (в зависимости от исполнения)
- Встроенный расцепитель для отключения нагрузки (в зависимости от исполнения)
- Оптический и электрический испытательные выходы активной энергии с возможностью переключения в режим проверки точности измерения реактивной
- Пломбируемая кнопка разрешения программирования
- Подсветка ЖКИ (в зависимости от исполнения)
- Электрический испытательный выход встроенных часов
- Датчик магнитного поля (опционально)
- Датчик тока шунт

Межповерочный интервал

280 000 YACOB

Средняя наработка

30 ЛЕТ

Средний срок службы

7 ЛЕТ

Гарантийный срок

Прибор учёта электроэнергии **HEBA MT 115**

Однофазный многотарифный

Исполнения с интерфейсами:

GSM RF (2,4 ГГц, 868 МГц)

RS-485 PLC PRIME

Функциональные особенности

- Измерение параметров качества электроэнергии установившихся отклонений частоты сети и напряжения
- Изменённая система задания тарифных расписаний, позволяющая устанавливать 36 графиков тарификации с указанием времени начала 48 тарифных зон суток и тарифа раздельно для каждого дня недели
- Возможность установки сменных коммуникационных модулей
- Возможность замены батареи без снятия пломб со знаком поверки
- Гибкая система формирования профилей измеряемых величин

Технические характеристики

Класс точности акт./реакт.	1/2
Номинальное напряжение, В	230
Рабочий диапазон фазных напряжений, В	от 161 до 264
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Номинальный (макс.) ток, А	5(60); 5(80)
Разрядность показаний	5+2
Измерение установившихся отклонений напряжения и частоты по ГОСТ 30804.4.30-2013	класс S
Габаритные размеры, мм	180x135x65

- Оптический порт по ГОСТ IEC 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока
- Сменный коммуникационный модуль
- Датчик магнитного поля
- Два датчика тока (два шунта)
- Вход резервного питания, 9-27 В
- Подсветка ЖКИ
- Электронные пломбы крышки клеммной колодки и корпуса
- Оптический и электрический испытательные выходы активной энергии и точности хода часов с возможностью переключения в режим проверки точности измерения реактивной энергии
- Звукоизлучатель для звукового информирования о начале превышения порогов напряжения, лимита мощности, лимита энергии, воздействия магнитным полем, неравенства токов
- Встроенный расцепитель для отключения нагрузки при превышении заданного лимита мощности, порогов напряжений, лимита энергии, при обнаружении сильного магнитного поля, неравенства токов в цепях фазного и нулевого проводов

Межповерочный интервал

280 000 YACOB

Средняя наработка

30 ЛЕТ

Средний срок службы

7 JET

Гарантийный срок

Прибор учёта электроэнергии

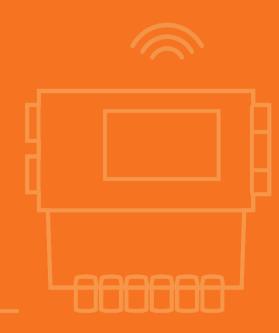
HEBA MT 124

Однофазный многотарифный

Исполнения с интерфейсами:

RS-485 RF (2,4 ГГц)

Функциональные особенности


- Измерение реактивной положительной и отрицательной энергии (в зависимости от исполнения)
- Измерение параметров качества электроэнергии установившихся отклонений частоты сети и напряжения (в зависимости от исполнения)
- Замена батареи без вскрытия счётчика
- Встроенный суперконденсатор позволяет заменить батарею без последующей установки времени

Технические характеристики

Класс точности акт./реакт.	1/2
Номинальное напряжение, В	230
Рабочий диапазон фазных напряжений, В	от 161 до 264
Номинальная частота сети, Гц	50
Рабочий диапазон частот, Гц	$50 \pm 2,5$
Номинальный (макс.) ток, А	5(60), 5(80)
Разрядность показаний	6+2
Габаритные размеры, мм	102x90x68

- Оптический порт по ГОСТ IEC 61107-2011
- Интерфейс RS-485 с питанием от встроенного блока питания или радиомодемом 2,4 ГГц (в зависимости от исполнения)
- Встроенный расцепитель для отключения нагрузки (в зависимости от исполнения)
- Оптический и электрический испытательные выходы активной энергии с возможностью переключения в режим проверки точности измерения реактивной энергии
- Подсветка ЖКИ (в зависимости от исполнения)
- Электрический испытательный выход встроенных часов
- Электронная пломба крышки клеммной колодки
- Датчик магнитного поля (опционально)
- Датчик тока шунт
- Датчик тока в нулевом проводе шунт (в зависимости от исполнения)

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

5 ЛЕТ

Межповерочный интервал

50 000 YACOB

Средняя наработка на отказ

15 ЛЕТ

Средний срок службы

5 ЛЕТ

Гарантийный срок

Устройство сбора и передачи данных

HEBA V01-U

Исполнения с интерфейсами

Для чтения собранных УСПД данных и для его конфигурации:

USB-device

GSM/GPRS/3G

Ethernet

Для сбора данных с приборов учёта:

RS-485

RF PLC (G3/PRIME)

Функциональные особенности

- Заложен принцип модульности, используются 4 независимых слота
- Возможность выбора одного из коммуникационных модулей (RS-485, PLC (G3/PRIME), RF) для установки в слот
- Возможность интегрировать в схему любой тип счётчиков
- Обновление прошивки происходит дистанционно через Ethernet, GSM/GPRS
- Опрос счётчиков по расписанию или в режиме прямого доступа
- Защита данных от несанкционированного доступа
- Осуществление коррекции текущего времени по GPS, Ethernet, GSM
- Автоматическое самотестирование функциональных модулей и узлов автоматизированных систем
- Формирование журналов событий и передача информации по запросу

Технические характеристики

Номинальное значение напряжения источника основного питания переменного тока частотой 50 ± 1 Гц, В	230
Мощность потребления от питающей сети переменного тока, не более, ВА	50
Номинальное значение напряжения резервного источника питания постоянного тока, В	12
Потребляемая мощность от резервного источника питания постоянного тока, не более, Вт	25

Стандартный объём внутренней памяти УСПД, используемый для хранения данных, Гбит	2 (расширение до 128)
Степень защиты УСПД от проникновения твёрдых тел и воды по ГОСТ 14254-96	IP51
Предельно допустимая температура окружающей среды во время эксплуатации, °С	-40+70
Относительная влажность воздуха не более, %	90
Атмосферное давление, кПа:	
- пониженное	84
- ПОВЫШЕННОЕ	107
Количество приборов учёта, подключаемых к УСПД для каждого интерфейса, шт (в зависимости от исполнения):	
- RS-485	до 256
- RF	до 512
- PLC (G3/PRIME)	до 512
Скорость передачи информации по каналу связи для каждого интерфейса, Кбит/с:	
- RS-485	9,6
- RF	до 1000
- PLC (G3/PRIME)	115-256
Габаритные размеры, мм	235x118x119
Масса не более, кг	1
Хранение данных, в т.ч. при отключении питания, полученных от ПУ, не менее, лет	3,5

КОМПОНЕНТЫ СИСТЕМЫ «НЕВА 1»

Благодаря системе HEBA 1 и её компонентам возможно автоматизиорвать процесс сбора информации о потреблении электроэнергии, зафиксировать факты и объёмы хищений, дистанционном ограничить потребление электроэнергии. Принцип работы системы:

Приборы учёта НЕВА осуществляют измерение параметров потребления электроэнергии, затем устройства сбора (GSM- шлюзы) собирают, подготавливают и хранят информацию со счётчиков. Далее с GSM-шлюзов собранная информация поступает в программное обеспечение, где обрабатывается и отображается в удобном для пользователя формате.

ПТК «МОСТ» -

собранный в одну коробку комплект оборудования, необходимого для организации автоматизированной системы учёта. Готовое простое и доступное решение, которое позволяет строить современные, функциональные и экономные системы учёта электроэнергии.

USB-радиомодуль ZB-313C

Устройство для локального чтения и сбора данных с приборов учёта «НЕВА» со встроенным радиомодулем (или выносным радиомодулем, подключённым по RS-485).

Радиомодуль-ретранслятор ZB-110S / ZB-210S / ZB-410S

Осуществляет ретрансляцию данных между приборами учёта, а также используется как выносной радиомодуль для подключения к счётчикам HEBA с RS-485.

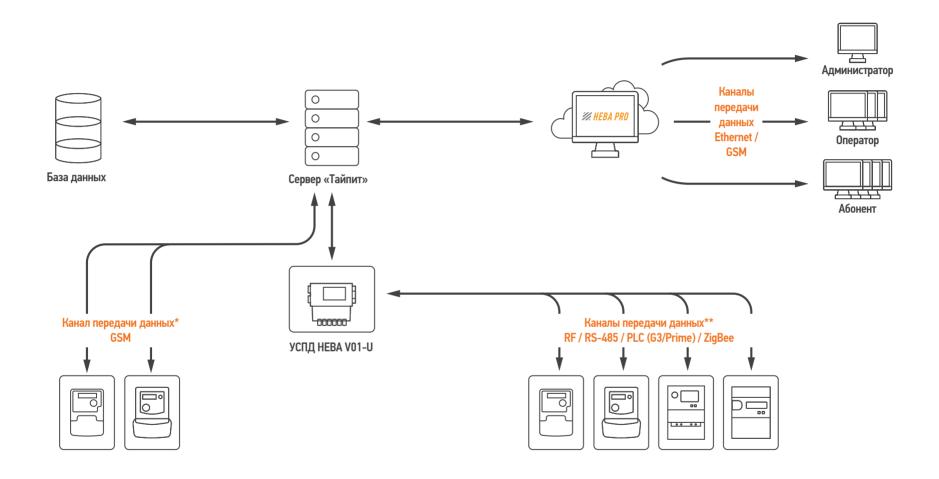
GSM-шлюз RG 107.01 / RG 108.01

Устройство предназначено для чтения и сбора данных с приборов учёта HEBA MT и HEBA CT по радиоканалу 2,4 ГГц и проводному интерфейсу RS-485.

Программное обеспечение «НЕВА 1»

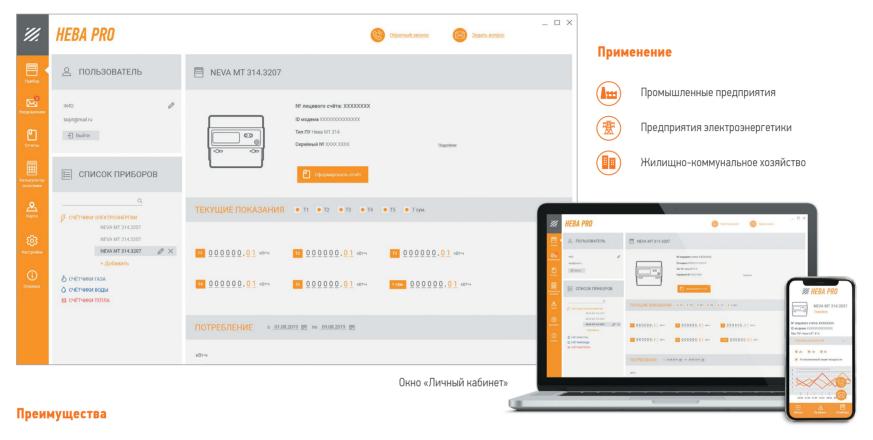
Локальное программное обеспечение, которое имеет лёгкий и понятный интерфейс. Позволяет выгружать различные виды отчётов: балансные, квитанции по каждому абоненту, а также управлять мощностью и дистанционно ограничивать потребление.

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ «HEBA PRO»

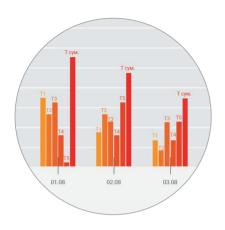

Предназначено для автоматизированного бесперебойного сбора, обработки и учёта измеряемых данных, для конфигурирования, наладки и контроля используемых в АСКУЭ счётчиков электроэнергии и УСПД.

Обеспечивает настройку необходимых параметров подключённых устройств и просмотр информации с каналов измерения за рразличные периоды.

Позволяет одновременно работать с группой подключённых устройств.



HEBA PRO


^{*} Вариант I — напрямую через канал GSM

^{**} Вариант II — через УСПД НЕВА V01-U

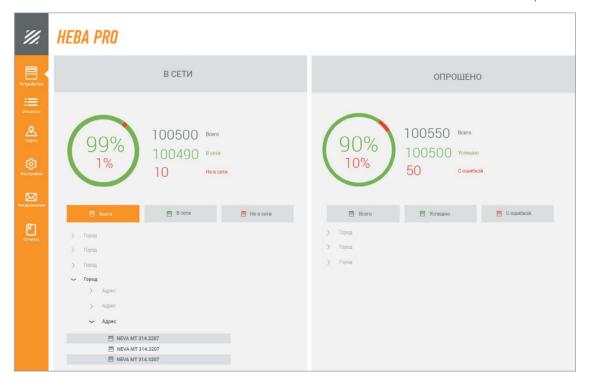
- Разграничение прав доступа (администратор, оператор, абонент)
- Разработано в соответствии с законом о защите персональных данных
- Возможность ограничения нагрузки на сервер клиента за счёт модульной структуры сервера
- Безопасное хранение данных

- Управление расцепителем нагрузки (возможность удалённого отключения абонента администратором)
- Инструменты автоматизированной самодиагностики основных подсистем и процессов системы
- Информирование о важных событиях (вскрытие крышки корпуса, внешнее воздействие магнитного поля, вмешательство в работу и т.д.)
- Возможность интегрирования в систему существующего парка новых ПУ
- Статистика по каждому ПУ за любой период времени (час/день/месяц)
- Сбор данных происходит в режиме реального времени

Удобство в использовании

- Контроль работы используемого оборудования
- Удобное отображение данных в табличном и графическом вариантах
- Встроенные удобные фильтры для просмотра событий за определённый период
- Архив данных
- Персональные детальные отчёты по любому заданному периоду
- Возможность сортировать и группировать данные для анализа
- Экспорт данных в форматах xls и pdf за выбранный период
- Просмотр расположения объектов с использованием интерактивной графической карты
- Отслеживание динамики потребления
- Работа с данными возможна в любом месте, где есть доступ к Интернету

Системные требования


Для клиентского приложения HEBA PRO:

- процессор не хуже Intel Core 2 Duo 2ГГц
- оперативная память не менее 2048МБ (НЕВА PRO потребляет 100 - 150Мб для работы, без формирования отчётов)
- OC WINDOWS версии не ниже Vista SP2
- наличие установленной платформ .NET Framework v4.5.2
- свободное место на жёстком диске от 50Мб

Для формирования отчётов:

- до 1ГБ оперативной памяти
- сами отчёты могут занимать не ограниченное количество памяти на жёстком диске (зависит от количества счётчиков в отчёте)
- самый большой отчёт по 10 счётчикам за 1 месяц будет занимать 5.5Мб

Окно «Устройства»

000 «ТАЙПИТ — ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ»
193318, г. Санкт-Петербург, ул. Ворошилова, д. 2
+7 (812) 326-10-90
meters@taipit.ru
www.meters.taipit.ru

ОТДЕЛ ПРОЕКТОВ АСКУЗ +7 (812) 326-10-90, доб. 2125 askue@taipit.ru